usb: phy: Add snapshot of QTI USB PHY drivers

This change adds USB HSUSB and USB QMP PHY drivers used
on QTI MSM platforms. This snapshot is taken as of
msm-4.9 commit 11273b09e247 ("usb: phy: msm: Remove
phy-msm-usb driver").

Change-Id: I9f349baa5878f7f2a696dc52f048ead54a831c05
Signed-off-by: Jack Pham <jackp@codeaurora.org>
This commit is contained in:
Jack Pham 2018-01-12 18:22:33 -08:00
parent 21438a7d4d
commit 4a5a4c6dff
6 changed files with 1852 additions and 0 deletions

View File

@ -0,0 +1,131 @@
QCOM USB PHY transceivers
HSUSB PHY
Required properties:
- compatible: Should be "qcom,usb-hsphy-snps-femto"
- reg: Address and length of the register set for the device
Required regs are:
"hsusb_phy_base" : the base register for the PHY
- <supply-name>-supply: phandle to the regulator device tree node
Required "supply-name" examples are:
"vdd" : vdd supply for HSPHY digital circuit operation
"vdda18" : 1.8v supply for HSPHY
"vdda33" : 3.3v supply for HSPHY
- clocks: a list of phandles to the PHY clocks. Use as per
Documentation/devicetree/bindings/clock/clock-bindings.txt
- clock-names: Names of the clocks in 1-1 correspondence with the "clocks"
property. "ref_clk_src" is a mandatory clock.
- qcom,vdd-voltage-level: This property must be a list of three integer
values (no, min, max) where each value represents either a voltage in
microvolts or a value corresponding to voltage corner
- resets: reset specifier pair consists of phandle for the reset controller
and reset lines used by this controller.
- reset-names: reset signal name strings sorted in the same order as the resets
property.
Example:
hsphy@f9200000 {
compatible = "qcom,usb-hsphy-snps-femto";
reg = <0xff1000 0x400>;
vdd-supply = <&pm8841_s2_corner>;
vdda18-supply = <&pm8941_l6>;
vdda33-supply = <&pm8941_l24>;
qcom,vdd-voltage-level = <0 872000 872000>;
};
SSUSB-QMP PHY
Required properties:
- compatible: Should be "qcom,usb-ssphy-qmp", "qcom,usb-ssphy-qmp-v1" or
"qcom,usb-ssphy-qmp-v2" or "qcom,usb-ssphy-qmp-usb3-or-dp" or
"qcom,usb-ssphy-qmp-dp-combo"
- reg: Address and length of the register set for the device
Required regs are:
"qmp_phy_base" : QMP PHY Base register set.
- "vls_clamp_reg" : top-level CSR register to be written to enable phy vls
clamp which allows phy to detect autonomous mode. (optional for USB DP PHY)
- <supply-name>-supply: phandle to the regulator device tree node
Required "supply-name" examples are:
"vdd" : vdd supply for SSPHY digital circuit operation
"core" : high-voltage analog supply for SSPHY
- clocks: a list of phandles to the PHY clocks. Use as per
Documentation/devicetree/bindings/clock/clock-bindings.txt
- clock-names: Names of the clocks in 1-1 correspondence with the "clocks"
property. Required clocks are "aux_clk" and "pipe_clk".
- qcom,vdd-voltage-level: This property must be a list of three integer
values (no, min, max) where each value represents either a voltage in
microvolts or a value corresponding to voltage corner
- qcom,qmp-phy-init-seq: QMP PHY initialization sequence with reg offset, its
value, delay after register write. It is not must property to have for emulation.
- qcom,qmp-phy-reg-offset: Provides important phy register offsets in an order
defined in the phy driver.
Provide below mentioned register offsets in order for non USB DP combo PHY:
USB3_PHY_PCS_STATUS,
USB3_PHY_AUTONOMOUS_MODE_CTRL,
USB3_PHY_LFPS_RXTERM_IRQ_CLEAR,
USB3_PHY_POWER_DOWN_CONTROL,
USB3_PHY_SW_RESET,
USB3_PHY_START
In addion to above following set of registers offset needed for USB DP combo PHY in mentioned order:
USB3_DP_DP_PHY_PD_CTL,
USB3_DP_COM_POWER_DOWN_CTRL,
USB3_DP_COM_SW_RESET,
USB3_DP_COM_RESET_OVRD_CTRL,
USB3_DP_COM_PHY_MODE_CTRL,
USB3_DP_COM_TYPEC_CTRL,
USB3_DP_COM_SWI_CTRL,
USB3_PCS_MISC_CLAMP_ENABLE
Optional register for configuring USB Type-C port select if available:
USB3_PHY_PCS_MISC_TYPEC_CTRL
- resets: reset specifier pair consists of phandle for the reset controller
and reset lines used by this controller.
- reset-names: reset signal name strings sorted in the same order as the resets
property.
Optional properties:
- reg: Additional register set of address and length to control QMP PHY are:
"tcsr_usb3_dp_phymode" : top-level CSR register to be written to select
super speed usb qmp phy.
- clocks: a list of phandles to the PHY clocks. Use as per
Documentation/devicetree/bindings/clock/clock-bindings.txt
- clock-names: Names of the clocks in 1-1 correspondence with the "clocks"
property. "cfg_ahb_clk" and "com_aux_clk" are an optional clocks.
- qcom,vbus-valid-override: If present, indicates VBUS pin is not connected to
the USB PHY and the controller must rely on external VBUS notification in
order to manually relay the notification to the SSPHY.
- qcom,emulation: Indicates that we are running on emulation platform.
- qcom,core-voltage-level: This property must be a list of three integer
values (no, min, max) where each value represents either a voltage in
microvolts or a value corresponding to voltage corner.
Example:
ssphy0: ssphy@f9b38000 {
compatible = "qcom,usb-ssphy-qmp";
reg = <0xf9b38000 0x16c>,
<0x01947244 0x4>;
reg-names = "qmp_phy_base",
"vls_clamp_reg";
vdd-supply = <&pmd9635_l4>;
vdda18-supply = <&pmd9635_l8>;
qcom,vdd-voltage-level = <0 900000 1050000>;
qcom,vbus-valid-override;
clocks = <&clock_gcc clk_gcc_usb3_phy_aux_clk>,
<&clock_gcc clk_gcc_usb3_phy_pipe_clk>,
<&clock_gcc clk_gcc_usb_phy_cfg_ahb2phy_clk>,
<&clock_gcc clk_ln_bb_clk1>,
<&clock_gcc clk_gcc_usb3_clkref_clk>;
clock-names = "aux_clk", "pipe_clk", "cfg_ahb_clk",
"ref_clk_src", "ref_clk";
resets = <&clock_gcc GCC_USB3_PHY_BCR>,
<&clock_gcc GCC_USB3PHY_PHY_BCR>;
reset-names = "phy_reset",
"phy_phy_reset";
};

View File

@ -196,6 +196,26 @@ config USB_QCOM_EMU_PHY
To compile this driver as a module, choose M here: the
module will be called phy-qcom-emu.
config USB_MSM_SSPHY_QMP
tristate "MSM SSUSB QMP PHY Driver"
depends on ARCH_QCOM
select USB_PHY
help
Enable this to support the SuperSpeed USB transceiver on MSM chips.
This driver supports the PHY which uses the QSCRATCH-based register
set for its control sequences, normally paired with newer DWC3-based
SuperSpeed controllers.
config MSM_HSUSB_PHY
tristate "MSM HSUSB PHY Driver"
depends on ARCH_QCOM
select USB_PHY
help
Enable this to support the HSUSB PHY on MSM chips. This driver supports
the high-speed PHY which is usually paired with either the ChipIdea or
Synopsys DWC3 USB IPs on MSM SOCs. This driver expects to configure the
PHY with a dedicated register I/O memory region.
config USB_MV_OTG
tristate "Marvell USB OTG support"
depends on USB_EHCI_MV && USB_MV_UDC && PM && USB_OTG

View File

@ -30,3 +30,5 @@ obj-$(CONFIG_USB_MXS_PHY) += phy-mxs-usb.o
obj-$(CONFIG_USB_ULPI) += phy-ulpi.o
obj-$(CONFIG_USB_ULPI_VIEWPORT) += phy-ulpi-viewport.o
obj-$(CONFIG_KEYSTONE_USB_PHY) += phy-keystone.o
obj-$(CONFIG_USB_MSM_SSPHY_QMP) += phy-msm-ssusb-qmp.o
obj-$(CONFIG_MSM_HSUSB_PHY) += phy-msm-snps-hs.o

View File

@ -0,0 +1,646 @@
/*
* Copyright (c) 2017-2018, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/usb/phy.h>
#include <linux/reset.h>
#define USB2_PHY_USB_PHY_UTMI_CTRL0 (0x3c)
#define SLEEPM BIT(0)
#define USB2_PHY_USB_PHY_UTMI_CTRL5 (0x50)
#define ATERESET BIT(0)
#define POR BIT(1)
#define USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON0 (0x54)
#define VATESTENB_MASK (0x3 << 0)
#define RETENABLEN BIT(3)
#define FSEL_MASK (0x7 << 4)
#define FSEL_DEFAULT (0x3 << 4)
#define USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON1 (0x58)
#define VBUSVLDEXTSEL0 BIT(4)
#define PLLBTUNE BIT(5)
#define USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON2 (0x5c)
#define VREGBYPASS BIT(0)
#define USB2_PHY_USB_PHY_HS_PHY_CTRL1 (0x60)
#define VBUSVLDEXT0 BIT(0)
#define USB2_PHY_USB_PHY_HS_PHY_CTRL2 (0x64)
#define USB2_SUSPEND_N BIT(2)
#define USB2_SUSPEND_N_SEL BIT(3)
#define USB2_PHY_USB_PHY_HS_PHY_TEST0 (0x80)
#define TESTDATAIN_MASK (0xff << 0)
#define USB2_PHY_USB_PHY_HS_PHY_TEST1 (0x84)
#define TESTDATAOUTSEL BIT(4)
#define TOGGLE_2WR BIT(6)
#define USB2_PHY_USB_PHY_CFG0 (0x94)
#define UTMI_PHY_CMN_CTRL_OVERRIDE_EN BIT(1)
#define USB2_PHY_USB_PHY_REFCLK_CTRL (0xa0)
#define REFCLK_SEL_MASK (0x3 << 0)
#define REFCLK_SEL_DEFAULT (0x2 << 0)
#define USB_HSPHY_3P3_VOL_MIN 3050000 /* uV */
#define USB_HSPHY_3P3_VOL_MAX 3300000 /* uV */
#define USB_HSPHY_3P3_HPM_LOAD 16000 /* uA */
#define USB_HSPHY_3P3_VOL_FSHOST 3150000 /* uV */
#define USB_HSPHY_1P8_VOL_MIN 1704000 /* uV */
#define USB_HSPHY_1P8_VOL_MAX 1800000 /* uV */
#define USB_HSPHY_1P8_HPM_LOAD 19000 /* uA */
struct msm_hsphy {
struct usb_phy phy;
void __iomem *base;
struct clk *ref_clk_src;
struct clk *cfg_ahb_clk;
struct reset_control *phy_reset;
struct regulator *vdd;
struct regulator *vdda33;
struct regulator *vdda18;
int vdd_levels[3]; /* none, low, high */
bool clocks_enabled;
bool power_enabled;
bool suspended;
bool cable_connected;
/* emulation targets specific */
void __iomem *emu_phy_base;
int *emu_init_seq;
int emu_init_seq_len;
int *emu_dcm_reset_seq;
int emu_dcm_reset_seq_len;
};
static void msm_hsphy_enable_clocks(struct msm_hsphy *phy, bool on)
{
dev_dbg(phy->phy.dev, "%s(): clocks_enabled:%d on:%d\n",
__func__, phy->clocks_enabled, on);
if (!phy->clocks_enabled && on) {
clk_prepare_enable(phy->ref_clk_src);
if (phy->cfg_ahb_clk)
clk_prepare_enable(phy->cfg_ahb_clk);
phy->clocks_enabled = true;
}
if (phy->clocks_enabled && !on) {
if (phy->cfg_ahb_clk)
clk_disable_unprepare(phy->cfg_ahb_clk);
clk_disable_unprepare(phy->ref_clk_src);
phy->clocks_enabled = false;
}
}
static int msm_hsphy_config_vdd(struct msm_hsphy *phy, int high)
{
int min, ret;
min = high ? 1 : 0; /* low or none? */
ret = regulator_set_voltage(phy->vdd, phy->vdd_levels[min],
phy->vdd_levels[2]);
if (ret) {
dev_err(phy->phy.dev, "unable to set voltage for hsusb vdd\n");
return ret;
}
dev_dbg(phy->phy.dev, "%s: min_vol:%d max_vol:%d\n", __func__,
phy->vdd_levels[min], phy->vdd_levels[2]);
return ret;
}
static int msm_hsphy_enable_power(struct msm_hsphy *phy, bool on)
{
int ret = 0;
dev_dbg(phy->phy.dev, "%s turn %s regulators. power_enabled:%d\n",
__func__, on ? "on" : "off", phy->power_enabled);
if (phy->power_enabled == on) {
dev_dbg(phy->phy.dev, "PHYs' regulators are already ON.\n");
return 0;
}
if (!on)
goto disable_vdda33;
ret = msm_hsphy_config_vdd(phy, true);
if (ret) {
dev_err(phy->phy.dev, "Unable to config VDD:%d\n",
ret);
goto err_vdd;
}
ret = regulator_enable(phy->vdd);
if (ret) {
dev_err(phy->phy.dev, "Unable to enable VDD\n");
goto unconfig_vdd;
}
ret = regulator_set_load(phy->vdda18, USB_HSPHY_1P8_HPM_LOAD);
if (ret < 0) {
dev_err(phy->phy.dev, "Unable to set HPM of vdda18:%d\n", ret);
goto disable_vdd;
}
ret = regulator_set_voltage(phy->vdda18, USB_HSPHY_1P8_VOL_MIN,
USB_HSPHY_1P8_VOL_MAX);
if (ret) {
dev_err(phy->phy.dev,
"Unable to set voltage for vdda18:%d\n", ret);
goto put_vdda18_lpm;
}
ret = regulator_enable(phy->vdda18);
if (ret) {
dev_err(phy->phy.dev, "Unable to enable vdda18:%d\n", ret);
goto unset_vdda18;
}
ret = regulator_set_load(phy->vdda33, USB_HSPHY_3P3_HPM_LOAD);
if (ret < 0) {
dev_err(phy->phy.dev, "Unable to set HPM of vdda33:%d\n", ret);
goto disable_vdda18;
}
ret = regulator_set_voltage(phy->vdda33, USB_HSPHY_3P3_VOL_MIN,
USB_HSPHY_3P3_VOL_MAX);
if (ret) {
dev_err(phy->phy.dev,
"Unable to set voltage for vdda33:%d\n", ret);
goto put_vdda33_lpm;
}
ret = regulator_enable(phy->vdda33);
if (ret) {
dev_err(phy->phy.dev, "Unable to enable vdda33:%d\n", ret);
goto unset_vdd33;
}
phy->power_enabled = true;
pr_debug("%s(): HSUSB PHY's regulators are turned ON.\n", __func__);
return ret;
disable_vdda33:
ret = regulator_disable(phy->vdda33);
if (ret)
dev_err(phy->phy.dev, "Unable to disable vdda33:%d\n", ret);
unset_vdd33:
ret = regulator_set_voltage(phy->vdda33, 0, USB_HSPHY_3P3_VOL_MAX);
if (ret)
dev_err(phy->phy.dev,
"Unable to set (0) voltage for vdda33:%d\n", ret);
put_vdda33_lpm:
ret = regulator_set_load(phy->vdda33, 0);
if (ret < 0)
dev_err(phy->phy.dev, "Unable to set (0) HPM of vdda33\n");
disable_vdda18:
ret = regulator_disable(phy->vdda18);
if (ret)
dev_err(phy->phy.dev, "Unable to disable vdda18:%d\n", ret);
unset_vdda18:
ret = regulator_set_voltage(phy->vdda18, 0, USB_HSPHY_1P8_VOL_MAX);
if (ret)
dev_err(phy->phy.dev,
"Unable to set (0) voltage for vdda18:%d\n", ret);
put_vdda18_lpm:
ret = regulator_set_load(phy->vdda18, 0);
if (ret < 0)
dev_err(phy->phy.dev, "Unable to set LPM of vdda18\n");
disable_vdd:
if (ret)
dev_err(phy->phy.dev, "Unable to disable vdd:%d\n",
ret);
unconfig_vdd:
ret = msm_hsphy_config_vdd(phy, false);
if (ret)
dev_err(phy->phy.dev, "Unable unconfig VDD:%d\n",
ret);
err_vdd:
phy->power_enabled = false;
dev_dbg(phy->phy.dev, "HSUSB PHY's regulators are turned OFF.\n");
return ret;
}
static void msm_usb_write_readback(void __iomem *base, u32 offset,
const u32 mask, u32 val)
{
u32 write_val, tmp = readl_relaxed(base + offset);
tmp &= ~mask; /* retain other bits */
write_val = tmp | val;
writel_relaxed(write_val, base + offset);
/* Read back to see if val was written */
tmp = readl_relaxed(base + offset);
tmp &= mask; /* clear other bits */
if (tmp != val)
pr_err("%s: write: %x to QSCRATCH: %x FAILED\n",
__func__, val, offset);
}
static void msm_hsphy_reset(struct msm_hsphy *phy)
{
int ret;
ret = reset_control_assert(phy->phy_reset);
if (ret)
dev_err(phy->phy.dev, "%s: phy_reset assert failed\n",
__func__);
usleep_range(100, 150);
ret = reset_control_deassert(phy->phy_reset);
if (ret)
dev_err(phy->phy.dev, "%s: phy_reset deassert failed\n",
__func__);
}
static void hsusb_phy_write_seq(void __iomem *base, u32 *seq, int cnt,
unsigned long delay)
{
int i;
pr_debug("Seq count:%d\n", cnt);
for (i = 0; i < cnt; i = i+2) {
pr_debug("write 0x%02x to 0x%02x\n", seq[i], seq[i+1]);
writel_relaxed(seq[i], base + seq[i+1]);
if (delay)
usleep_range(delay, (delay + 2000));
}
}
static int msm_hsphy_emu_init(struct usb_phy *uphy)
{
struct msm_hsphy *phy = container_of(uphy, struct msm_hsphy, phy);
int ret;
dev_dbg(uphy->dev, "%s\n", __func__);
ret = msm_hsphy_enable_power(phy, true);
if (ret)
return ret;
msm_hsphy_enable_clocks(phy, true);
msm_hsphy_reset(phy);
if (phy->emu_init_seq) {
hsusb_phy_write_seq(phy->base,
phy->emu_init_seq,
phy->emu_init_seq_len, 10000);
/* Wait for 5ms as per QUSB2 RUMI sequence */
usleep_range(5000, 7000);
if (phy->emu_dcm_reset_seq)
hsusb_phy_write_seq(phy->emu_phy_base,
phy->emu_dcm_reset_seq,
phy->emu_dcm_reset_seq_len, 10000);
}
return 0;
}
static int msm_hsphy_init(struct usb_phy *uphy)
{
struct msm_hsphy *phy = container_of(uphy, struct msm_hsphy, phy);
int ret;
dev_dbg(uphy->dev, "%s\n", __func__);
ret = msm_hsphy_enable_power(phy, true);
if (ret)
return ret;
msm_hsphy_enable_clocks(phy, true);
msm_hsphy_reset(phy);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_CFG0,
UTMI_PHY_CMN_CTRL_OVERRIDE_EN, UTMI_PHY_CMN_CTRL_OVERRIDE_EN);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_UTMI_CTRL5,
POR, POR);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON0,
FSEL_MASK, 0);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON1,
PLLBTUNE, PLLBTUNE);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_REFCLK_CTRL,
REFCLK_SEL_MASK, REFCLK_SEL_DEFAULT);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON1,
VBUSVLDEXTSEL0, VBUSVLDEXTSEL0);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL1,
VBUSVLDEXT0, VBUSVLDEXT0);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON2,
VREGBYPASS, VREGBYPASS);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_UTMI_CTRL5,
ATERESET, ATERESET);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_HS_PHY_TEST1,
TESTDATAOUTSEL, TESTDATAOUTSEL);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_HS_PHY_TEST1,
TOGGLE_2WR, TOGGLE_2WR);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON0,
VATESTENB_MASK, 0);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_HS_PHY_TEST0,
TESTDATAIN_MASK, 0);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL2,
USB2_SUSPEND_N_SEL, USB2_SUSPEND_N_SEL);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL2,
USB2_SUSPEND_N, USB2_SUSPEND_N);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_UTMI_CTRL0,
SLEEPM, SLEEPM);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_UTMI_CTRL5,
POR, 0);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL2,
USB2_SUSPEND_N_SEL, 0);
msm_usb_write_readback(phy->base, USB2_PHY_USB_PHY_CFG0,
UTMI_PHY_CMN_CTRL_OVERRIDE_EN, 0);
return 0;
}
static int msm_hsphy_set_suspend(struct usb_phy *uphy, int suspend)
{
return 0;
}
static int msm_hsphy_notify_connect(struct usb_phy *uphy,
enum usb_device_speed speed)
{
struct msm_hsphy *phy = container_of(uphy, struct msm_hsphy, phy);
phy->cable_connected = true;
return 0;
}
static int msm_hsphy_notify_disconnect(struct usb_phy *uphy,
enum usb_device_speed speed)
{
struct msm_hsphy *phy = container_of(uphy, struct msm_hsphy, phy);
phy->cable_connected = false;
return 0;
}
static int msm_hsphy_probe(struct platform_device *pdev)
{
struct msm_hsphy *phy;
struct device *dev = &pdev->dev;
struct resource *res;
int ret = 0, size = 0;
phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL);
if (!phy) {
ret = -ENOMEM;
goto err_ret;
}
phy->phy.dev = dev;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"hsusb_phy_base");
if (!res) {
dev_err(dev, "missing memory base resource\n");
ret = -ENODEV;
goto err_ret;
}
phy->base = devm_ioremap_resource(dev, res);
if (IS_ERR(phy->base)) {
dev_err(dev, "ioremap failed\n");
ret = -ENODEV;
goto err_ret;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"emu_phy_base");
if (res) {
phy->emu_phy_base = devm_ioremap_resource(dev, res);
if (IS_ERR(phy->emu_phy_base)) {
dev_dbg(dev, "couldn't ioremap emu_phy_base\n");
phy->emu_phy_base = NULL;
}
}
/* ref_clk_src is needed irrespective of SE_CLK or DIFF_CLK usage */
phy->ref_clk_src = devm_clk_get(dev, "ref_clk_src");
if (IS_ERR(phy->ref_clk_src)) {
dev_dbg(dev, "clk get failed for ref_clk_src\n");
ret = PTR_ERR(phy->ref_clk_src);
return ret;
}
if (of_property_match_string(pdev->dev.of_node,
"clock-names", "cfg_ahb_clk") >= 0) {
phy->cfg_ahb_clk = devm_clk_get(dev, "cfg_ahb_clk");
if (IS_ERR(phy->cfg_ahb_clk)) {
ret = PTR_ERR(phy->cfg_ahb_clk);
if (ret != -EPROBE_DEFER)
dev_err(dev,
"clk get failed for cfg_ahb_clk ret %d\n", ret);
return ret;
}
}
phy->phy_reset = devm_reset_control_get(dev, "phy_reset");
if (IS_ERR(phy->phy_reset))
return PTR_ERR(phy->phy_reset);
of_get_property(dev->of_node, "qcom,emu-init-seq", &size);
if (size) {
phy->emu_init_seq = devm_kzalloc(dev,
size, GFP_KERNEL);
if (phy->emu_init_seq) {
phy->emu_init_seq_len =
(size / sizeof(*phy->emu_init_seq));
if (phy->emu_init_seq_len % 2) {
dev_err(dev, "invalid emu_init_seq_len\n");
return -EINVAL;
}
of_property_read_u32_array(dev->of_node,
"qcom,emu-init-seq",
phy->emu_init_seq,
phy->emu_init_seq_len);
} else {
dev_dbg(dev,
"error allocating memory for emu_init_seq\n");
}
}
size = 0;
of_get_property(dev->of_node, "qcom,emu-dcm-reset-seq", &size);
if (size) {
phy->emu_dcm_reset_seq = devm_kzalloc(dev,
size, GFP_KERNEL);
if (phy->emu_dcm_reset_seq) {
phy->emu_dcm_reset_seq_len =
(size / sizeof(*phy->emu_dcm_reset_seq));
if (phy->emu_dcm_reset_seq_len % 2) {
dev_err(dev, "invalid emu_dcm_reset_seq_len\n");
return -EINVAL;
}
of_property_read_u32_array(dev->of_node,
"qcom,emu-dcm-reset-seq",
phy->emu_dcm_reset_seq,
phy->emu_dcm_reset_seq_len);
} else {
dev_dbg(dev,
"error allocating memory for emu_dcm_reset_seq\n");
}
}
ret = of_property_read_u32_array(dev->of_node, "qcom,vdd-voltage-level",
(u32 *) phy->vdd_levels,
ARRAY_SIZE(phy->vdd_levels));
if (ret) {
dev_err(dev, "error reading qcom,vdd-voltage-level property\n");
goto err_ret;
}
phy->vdd = devm_regulator_get(dev, "vdd");
if (IS_ERR(phy->vdd)) {
dev_err(dev, "unable to get vdd supply\n");
ret = PTR_ERR(phy->vdd);
goto err_ret;
}
phy->vdda33 = devm_regulator_get(dev, "vdda33");
if (IS_ERR(phy->vdda33)) {
dev_err(dev, "unable to get vdda33 supply\n");
ret = PTR_ERR(phy->vdda33);
goto err_ret;
}
phy->vdda18 = devm_regulator_get(dev, "vdda18");
if (IS_ERR(phy->vdda18)) {
dev_err(dev, "unable to get vdda18 supply\n");
ret = PTR_ERR(phy->vdda18);
goto err_ret;
}
platform_set_drvdata(pdev, phy);
if (phy->emu_init_seq)
phy->phy.init = msm_hsphy_emu_init;
else
phy->phy.init = msm_hsphy_init;
phy->phy.set_suspend = msm_hsphy_set_suspend;
phy->phy.notify_connect = msm_hsphy_notify_connect;
phy->phy.notify_disconnect = msm_hsphy_notify_disconnect;
phy->phy.type = USB_PHY_TYPE_USB2;
ret = usb_add_phy_dev(&phy->phy);
if (ret)
return ret;
return 0;
err_ret:
return ret;
}
static int msm_hsphy_remove(struct platform_device *pdev)
{
struct msm_hsphy *phy = platform_get_drvdata(pdev);
if (!phy)
return 0;
usb_remove_phy(&phy->phy);
clk_disable_unprepare(phy->ref_clk_src);
msm_hsphy_enable_clocks(phy, false);
msm_hsphy_enable_power(phy, false);
kfree(phy);
return 0;
}
static const struct of_device_id msm_usb_id_table[] = {
{
.compatible = "qcom,usb-hsphy-snps-femto",
},
{ },
};
MODULE_DEVICE_TABLE(of, msm_usb_id_table);
static struct platform_driver msm_hsphy_driver = {
.probe = msm_hsphy_probe,
.remove = msm_hsphy_remove,
.driver = {
.name = "msm-usb-hsphy",
.of_match_table = of_match_ptr(msm_usb_id_table),
},
};
module_platform_driver(msm_hsphy_driver);
MODULE_DESCRIPTION("MSM USB HS PHY driver");
MODULE_LICENSE("GPL v2");

File diff suppressed because it is too large Load Diff

View File

@ -15,6 +15,17 @@
#include <linux/usb.h>
#include <uapi/linux/usb/charger.h>
#define ENABLE_DP_MANUAL_PULLUP BIT(0)
#define ENABLE_SECONDARY_PHY BIT(1)
#define PHY_HOST_MODE BIT(2)
#define PHY_CHARGER_CONNECTED BIT(3)
#define PHY_VBUS_VALID_OVERRIDE BIT(4)
#define DEVICE_IN_SS_MODE BIT(5)
#define PHY_LANE_A BIT(6)
#define PHY_LANE_B BIT(7)
#define PHY_HSFS_MODE BIT(8)
#define PHY_LS_MODE BIT(9)
enum usb_phy_interface {
USBPHY_INTERFACE_MODE_UNKNOWN,
USBPHY_INTERFACE_MODE_UTMI,
@ -37,6 +48,8 @@ enum usb_phy_type {
USB_PHY_TYPE_UNDEFINED,
USB_PHY_TYPE_USB2,
USB_PHY_TYPE_USB3,
USB_PHY_TYPE_USB3_OR_DP,
USB_PHY_TYPE_USB3_AND_DP,
};
/* OTG defines lots of enumeration states before device reset */
@ -155,6 +168,9 @@ struct usb_phy {
* manually detect the charger type.
*/
enum usb_charger_type (*charger_detect)(struct usb_phy *x);
/* reset the PHY clocks */
int (*reset)(struct usb_phy *x);
};
/**
@ -229,6 +245,15 @@ usb_phy_vbus_off(struct usb_phy *x)
return x->set_vbus(x, false);
}
static inline int
usb_phy_reset(struct usb_phy *x)
{
if (x && x->reset)
return x->reset(x);
return 0;
}
/* for usb host and peripheral controller drivers */
#if IS_ENABLED(CONFIG_USB_PHY)
extern struct usb_phy *usb_get_phy(enum usb_phy_type type);