mirror of
https://github.com/rd-stuffs/msm-4.14.git
synced 2025-02-20 11:45:48 +08:00
time: Move frequently used functions to headers and declare them inline
Those function are frequently used in various places and declaring them inline can reduce overheads. Change-Id: I4c0845686f758eddeae0bd1a89ea09d551fb332f Signed-off-by: Park Ju Hyung <qkrwngud825@gmail.com> Signed-off-by: Richard Raya <rdxzv.dev@gmail.com>
This commit is contained in:
parent
022773be03
commit
ec951d8c2d
23
fs/inode.c
23
fs/inode.c
@ -2149,29 +2149,6 @@ void inode_nohighmem(struct inode *inode)
|
||||
}
|
||||
EXPORT_SYMBOL(inode_nohighmem);
|
||||
|
||||
/**
|
||||
* current_time - Return FS time
|
||||
* @inode: inode.
|
||||
*
|
||||
* Return the current time truncated to the time granularity supported by
|
||||
* the fs.
|
||||
*
|
||||
* Note that inode and inode->sb cannot be NULL.
|
||||
* Otherwise, the function warns and returns time without truncation.
|
||||
*/
|
||||
struct timespec current_time(struct inode *inode)
|
||||
{
|
||||
struct timespec now = current_kernel_time();
|
||||
|
||||
if (unlikely(!inode->i_sb)) {
|
||||
WARN(1, "current_time() called with uninitialized super_block in the inode");
|
||||
return now;
|
||||
}
|
||||
|
||||
return timespec_trunc(now, inode->i_sb->s_time_gran);
|
||||
}
|
||||
EXPORT_SYMBOL(current_time);
|
||||
|
||||
/*
|
||||
* Generic function to check FS_IOC_SETFLAGS values and reject any invalid
|
||||
* configurations.
|
||||
|
@ -1509,7 +1509,27 @@ static inline void i_gid_write(struct inode *inode, gid_t gid)
|
||||
inode->i_gid = make_kgid(inode->i_sb->s_user_ns, gid);
|
||||
}
|
||||
|
||||
extern struct timespec current_time(struct inode *inode);
|
||||
/**
|
||||
* current_time - Return FS time
|
||||
* @inode: inode.
|
||||
*
|
||||
* Return the current time truncated to the time granularity supported by
|
||||
* the fs.
|
||||
*
|
||||
* Note that inode and inode->sb cannot be NULL.
|
||||
* Otherwise, the function warns and returns time without truncation.
|
||||
*/
|
||||
static inline struct timespec current_time(struct inode *inode)
|
||||
{
|
||||
struct timespec now = current_kernel_time();
|
||||
|
||||
if (unlikely(!inode->i_sb)) {
|
||||
WARN(1, "current_time() called with uninitialized super_block in the inode");
|
||||
return now;
|
||||
}
|
||||
|
||||
return timespec_trunc(now, inode->i_sb->s_time_gran);
|
||||
}
|
||||
|
||||
/*
|
||||
* Snapshotting support.
|
||||
|
@ -286,19 +286,60 @@ extern unsigned long preset_lpj;
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Convert various time units to each other:
|
||||
* Convert jiffies to milliseconds and back.
|
||||
*
|
||||
* Avoid unnecessary multiplications/divisions in the
|
||||
* two most common HZ cases:
|
||||
*/
|
||||
extern unsigned int jiffies_to_msecs(const unsigned long j);
|
||||
extern unsigned int jiffies_to_usecs(const unsigned long j);
|
||||
static inline unsigned int jiffies_to_msecs(const unsigned long j)
|
||||
{
|
||||
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
|
||||
return (MSEC_PER_SEC / HZ) * j;
|
||||
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
|
||||
return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
|
||||
#else
|
||||
# if BITS_PER_LONG == 32
|
||||
return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
|
||||
HZ_TO_MSEC_SHR32;
|
||||
# else
|
||||
return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
|
||||
# endif
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline unsigned int jiffies_to_usecs(const unsigned long j)
|
||||
{
|
||||
/*
|
||||
* Hz usually doesn't go much further MSEC_PER_SEC.
|
||||
* jiffies_to_usecs() and usecs_to_jiffies() depend on that.
|
||||
*/
|
||||
BUILD_BUG_ON(HZ > USEC_PER_SEC);
|
||||
|
||||
#if !(USEC_PER_SEC % HZ)
|
||||
return (USEC_PER_SEC / HZ) * j;
|
||||
#else
|
||||
# if BITS_PER_LONG == 32
|
||||
return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
|
||||
# else
|
||||
return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
|
||||
# endif
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline u64 jiffies_to_nsecs(const unsigned long j)
|
||||
{
|
||||
return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC;
|
||||
}
|
||||
|
||||
extern u64 jiffies64_to_nsecs(u64 j);
|
||||
static inline u64 jiffies64_to_nsecs(u64 j)
|
||||
{
|
||||
#if !(NSEC_PER_SEC % HZ)
|
||||
return (NSEC_PER_SEC / HZ) * j;
|
||||
# else
|
||||
return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
|
||||
#endif
|
||||
}
|
||||
|
||||
extern unsigned long __msecs_to_jiffies(const unsigned int m);
|
||||
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
|
||||
/*
|
||||
* HZ is equal to or smaller than 1000, and 1000 is a nice round
|
||||
@ -335,6 +376,41 @@ static inline unsigned long _msecs_to_jiffies(const unsigned int m)
|
||||
return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32;
|
||||
}
|
||||
#endif
|
||||
|
||||
/**
|
||||
* msecs_to_jiffies: - convert milliseconds to jiffies
|
||||
* @m: time in milliseconds
|
||||
*
|
||||
* conversion is done as follows:
|
||||
*
|
||||
* - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
|
||||
*
|
||||
* - 'too large' values [that would result in larger than
|
||||
* MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
|
||||
*
|
||||
* - all other values are converted to jiffies by either multiplying
|
||||
* the input value by a factor or dividing it with a factor and
|
||||
* handling any 32-bit overflows.
|
||||
* for the details see __msecs_to_jiffies()
|
||||
*
|
||||
* msecs_to_jiffies() checks for the passed in value being a constant
|
||||
* via __builtin_constant_p() allowing gcc to eliminate most of the
|
||||
* code, __msecs_to_jiffies() is called if the value passed does not
|
||||
* allow constant folding and the actual conversion must be done at
|
||||
* runtime.
|
||||
* the _msecs_to_jiffies helpers are the HZ dependent conversion
|
||||
* routines found in include/linux/jiffies.h
|
||||
*/
|
||||
static inline unsigned long __msecs_to_jiffies(const unsigned int m)
|
||||
{
|
||||
/*
|
||||
* Negative value, means infinite timeout:
|
||||
*/
|
||||
if ((int)m < 0)
|
||||
return MAX_JIFFY_OFFSET;
|
||||
return _msecs_to_jiffies(m);
|
||||
}
|
||||
|
||||
/**
|
||||
* msecs_to_jiffies: - convert milliseconds to jiffies
|
||||
* @m: time in milliseconds
|
||||
@ -371,7 +447,6 @@ static __always_inline unsigned long msecs_to_jiffies(const unsigned int m)
|
||||
}
|
||||
}
|
||||
|
||||
extern unsigned long __usecs_to_jiffies(const unsigned int u);
|
||||
#if !(USEC_PER_SEC % HZ)
|
||||
static inline unsigned long _usecs_to_jiffies(const unsigned int u)
|
||||
{
|
||||
@ -385,6 +460,13 @@ static inline unsigned long _usecs_to_jiffies(const unsigned int u)
|
||||
}
|
||||
#endif
|
||||
|
||||
static inline unsigned long __usecs_to_jiffies(const unsigned int u)
|
||||
{
|
||||
if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
|
||||
return MAX_JIFFY_OFFSET;
|
||||
return _usecs_to_jiffies(u);
|
||||
}
|
||||
|
||||
/**
|
||||
* usecs_to_jiffies: - convert microseconds to jiffies
|
||||
* @u: time in microseconds
|
||||
@ -418,9 +500,61 @@ static __always_inline unsigned long usecs_to_jiffies(const unsigned int u)
|
||||
}
|
||||
}
|
||||
|
||||
extern unsigned long timespec64_to_jiffies(const struct timespec64 *value);
|
||||
extern void jiffies_to_timespec64(const unsigned long jiffies,
|
||||
struct timespec64 *value);
|
||||
/*
|
||||
* The TICK_NSEC - 1 rounds up the value to the next resolution. Note
|
||||
* that a remainder subtract here would not do the right thing as the
|
||||
* resolution values don't fall on second boundries. I.e. the line:
|
||||
* nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
|
||||
* Note that due to the small error in the multiplier here, this
|
||||
* rounding is incorrect for sufficiently large values of tv_nsec, but
|
||||
* well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
|
||||
* OK.
|
||||
*
|
||||
* Rather, we just shift the bits off the right.
|
||||
*
|
||||
* The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
|
||||
* value to a scaled second value.
|
||||
*/
|
||||
static inline unsigned long
|
||||
__timespec64_to_jiffies(u64 sec, long nsec)
|
||||
{
|
||||
nsec = nsec + TICK_NSEC - 1;
|
||||
|
||||
if (sec >= MAX_SEC_IN_JIFFIES){
|
||||
sec = MAX_SEC_IN_JIFFIES;
|
||||
nsec = 0;
|
||||
}
|
||||
return ((sec * SEC_CONVERSION) +
|
||||
(((u64)nsec * NSEC_CONVERSION) >>
|
||||
(NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
|
||||
|
||||
}
|
||||
|
||||
static inline unsigned long
|
||||
__timespec_to_jiffies(unsigned long sec, long nsec)
|
||||
{
|
||||
return __timespec64_to_jiffies((u64)sec, nsec);
|
||||
}
|
||||
|
||||
static inline unsigned long
|
||||
timespec64_to_jiffies(const struct timespec64 *value)
|
||||
{
|
||||
return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
|
||||
}
|
||||
|
||||
static inline void
|
||||
jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
|
||||
{
|
||||
/*
|
||||
* Convert jiffies to nanoseconds and separate with
|
||||
* one divide.
|
||||
*/
|
||||
u32 rem;
|
||||
value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
|
||||
NSEC_PER_SEC, &rem);
|
||||
value->tv_nsec = rem;
|
||||
}
|
||||
|
||||
static inline unsigned long timespec_to_jiffies(const struct timespec *value)
|
||||
{
|
||||
struct timespec64 ts = timespec_to_timespec64(*value);
|
||||
@ -437,21 +571,163 @@ static inline void jiffies_to_timespec(const unsigned long jiffies,
|
||||
*value = timespec64_to_timespec(ts);
|
||||
}
|
||||
|
||||
extern unsigned long timeval_to_jiffies(const struct timeval *value);
|
||||
extern void jiffies_to_timeval(const unsigned long jiffies,
|
||||
struct timeval *value);
|
||||
/*
|
||||
* We could use a similar algorithm to timespec_to_jiffies (with a
|
||||
* different multiplier for usec instead of nsec). But this has a
|
||||
* problem with rounding: we can't exactly add TICK_NSEC - 1 to the
|
||||
* usec value, since it's not necessarily integral.
|
||||
*
|
||||
* We could instead round in the intermediate scaled representation
|
||||
* (i.e. in units of 1/2^(large scale) jiffies) but that's also
|
||||
* perilous: the scaling introduces a small positive error, which
|
||||
* combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
|
||||
* units to the intermediate before shifting) leads to accidental
|
||||
* overflow and overestimates.
|
||||
*
|
||||
* At the cost of one additional multiplication by a constant, just
|
||||
* use the timespec implementation.
|
||||
*/
|
||||
static inline unsigned long
|
||||
timeval_to_jiffies(const struct timeval *value)
|
||||
{
|
||||
return __timespec_to_jiffies(value->tv_sec,
|
||||
value->tv_usec * NSEC_PER_USEC);
|
||||
}
|
||||
|
||||
static inline void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
|
||||
{
|
||||
/*
|
||||
* Convert jiffies to nanoseconds and separate with
|
||||
* one divide.
|
||||
*/
|
||||
u32 rem;
|
||||
|
||||
value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
|
||||
NSEC_PER_SEC, &rem);
|
||||
value->tv_usec = rem / NSEC_PER_USEC;
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert jiffies/jiffies_64 to clock_t and back.
|
||||
*/
|
||||
static inline clock_t jiffies_to_clock_t(unsigned long x)
|
||||
{
|
||||
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
|
||||
# if HZ < USER_HZ
|
||||
return x * (USER_HZ / HZ);
|
||||
# else
|
||||
return x / (HZ / USER_HZ);
|
||||
# endif
|
||||
#else
|
||||
return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
|
||||
#endif
|
||||
}
|
||||
|
||||
extern clock_t jiffies_to_clock_t(unsigned long x);
|
||||
static inline clock_t jiffies_delta_to_clock_t(long delta)
|
||||
{
|
||||
return jiffies_to_clock_t(max(0L, delta));
|
||||
}
|
||||
|
||||
extern unsigned long clock_t_to_jiffies(unsigned long x);
|
||||
extern u64 jiffies_64_to_clock_t(u64 x);
|
||||
extern u64 nsec_to_clock_t(u64 x);
|
||||
extern u64 nsecs_to_jiffies64(u64 n);
|
||||
extern unsigned long nsecs_to_jiffies(u64 n);
|
||||
static inline unsigned long clock_t_to_jiffies(unsigned long x)
|
||||
{
|
||||
#if (HZ % USER_HZ)==0
|
||||
if (x >= ~0UL / (HZ / USER_HZ))
|
||||
return ~0UL;
|
||||
return x * (HZ / USER_HZ);
|
||||
#else
|
||||
/* Don't worry about loss of precision here .. */
|
||||
if (x >= ~0UL / HZ * USER_HZ)
|
||||
return ~0UL;
|
||||
|
||||
/* .. but do try to contain it here */
|
||||
return div_u64((u64)x * HZ, USER_HZ);
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline u64 jiffies_64_to_clock_t(u64 x)
|
||||
{
|
||||
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
|
||||
# if HZ < USER_HZ
|
||||
x = div_u64(x * USER_HZ, HZ);
|
||||
# elif HZ > USER_HZ
|
||||
x = div_u64(x, HZ / USER_HZ);
|
||||
# else
|
||||
/* Nothing to do */
|
||||
# endif
|
||||
#else
|
||||
/*
|
||||
* There are better ways that don't overflow early,
|
||||
* but even this doesn't overflow in hundreds of years
|
||||
* in 64 bits, so..
|
||||
*/
|
||||
x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
|
||||
#endif
|
||||
return x;
|
||||
}
|
||||
|
||||
static inline u64 nsec_to_clock_t(u64 x)
|
||||
{
|
||||
#if (NSEC_PER_SEC % USER_HZ) == 0
|
||||
return div_u64(x, NSEC_PER_SEC / USER_HZ);
|
||||
#elif (USER_HZ % 512) == 0
|
||||
return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
|
||||
#else
|
||||
/*
|
||||
* max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
|
||||
* overflow after 64.99 years.
|
||||
* exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
|
||||
*/
|
||||
return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
|
||||
*
|
||||
* @n: nsecs in u64
|
||||
*
|
||||
* Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
|
||||
* And this doesn't return MAX_JIFFY_OFFSET since this function is designed
|
||||
* for scheduler, not for use in device drivers to calculate timeout value.
|
||||
*
|
||||
* note:
|
||||
* NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
|
||||
* ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
|
||||
*/
|
||||
static inline u64 nsecs_to_jiffies64(u64 n)
|
||||
{
|
||||
#if (NSEC_PER_SEC % HZ) == 0
|
||||
/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
|
||||
return div_u64(n, NSEC_PER_SEC / HZ);
|
||||
#elif (HZ % 512) == 0
|
||||
/* overflow after 292 years if HZ = 1024 */
|
||||
return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
|
||||
#else
|
||||
/*
|
||||
* Generic case - optimized for cases where HZ is a multiple of 3.
|
||||
* overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
|
||||
*/
|
||||
return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* nsecs_to_jiffies - Convert nsecs in u64 to jiffies
|
||||
*
|
||||
* @n: nsecs in u64
|
||||
*
|
||||
* Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
|
||||
* And this doesn't return MAX_JIFFY_OFFSET since this function is designed
|
||||
* for scheduler, not for use in device drivers to calculate timeout value.
|
||||
*
|
||||
* note:
|
||||
* NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
|
||||
* ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
|
||||
*/
|
||||
static inline unsigned long nsecs_to_jiffies(u64 n)
|
||||
{
|
||||
return (unsigned long)nsecs_to_jiffies64(n);
|
||||
}
|
||||
|
||||
#define TIMESTAMP_SIZE 30
|
||||
|
||||
|
@ -51,9 +51,45 @@ static inline int timeval_compare(const struct timeval *lhs, const struct timeva
|
||||
return lhs->tv_usec - rhs->tv_usec;
|
||||
}
|
||||
|
||||
extern time64_t mktime64(const unsigned int year, const unsigned int mon,
|
||||
const unsigned int day, const unsigned int hour,
|
||||
const unsigned int min, const unsigned int sec);
|
||||
/*
|
||||
* mktime64 - Converts date to seconds.
|
||||
* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
|
||||
* Assumes input in normal date format, i.e. 1980-12-31 23:59:59
|
||||
* => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
|
||||
*
|
||||
* [For the Julian calendar (which was used in Russia before 1917,
|
||||
* Britain & colonies before 1752, anywhere else before 1582,
|
||||
* and is still in use by some communities) leave out the
|
||||
* -year/100+year/400 terms, and add 10.]
|
||||
*
|
||||
* This algorithm was first published by Gauss (I think).
|
||||
*
|
||||
* A leap second can be indicated by calling this function with sec as
|
||||
* 60 (allowable under ISO 8601). The leap second is treated the same
|
||||
* as the following second since they don't exist in UNIX time.
|
||||
*
|
||||
* An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
|
||||
* tomorrow - (allowable under ISO 8601) is supported.
|
||||
*/
|
||||
static inline time64_t mktime64(const unsigned int year0, const unsigned int mon0,
|
||||
const unsigned int day, const unsigned int hour,
|
||||
const unsigned int min, const unsigned int sec)
|
||||
{
|
||||
unsigned int mon = mon0, year = year0;
|
||||
|
||||
/* 1..12 -> 11,12,1..10 */
|
||||
if (0 >= (int) (mon -= 2)) {
|
||||
mon += 12; /* Puts Feb last since it has leap day */
|
||||
year -= 1;
|
||||
}
|
||||
|
||||
return ((((time64_t)
|
||||
(year/4 - year/100 + year/400 + 367*mon/12 + day) +
|
||||
year*365 - 719499
|
||||
)*24 + hour /* now have hours - midnight tomorrow handled here */
|
||||
)*60 + min /* now have minutes */
|
||||
)*60 + sec; /* finally seconds */
|
||||
}
|
||||
|
||||
/**
|
||||
* Deprecated. Use mktime64().
|
||||
@ -66,15 +102,62 @@ static inline unsigned long mktime(const unsigned int year,
|
||||
return mktime64(year, mon, day, hour, min, sec);
|
||||
}
|
||||
|
||||
extern void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec);
|
||||
/**
|
||||
* set_normalized_timespec - set timespec sec and nsec parts and normalize
|
||||
*
|
||||
* @ts: pointer to timespec variable to be set
|
||||
* @sec: seconds to set
|
||||
* @nsec: nanoseconds to set
|
||||
*
|
||||
* Set seconds and nanoseconds field of a timespec variable and
|
||||
* normalize to the timespec storage format
|
||||
*
|
||||
* Note: The tv_nsec part is always in the range of
|
||||
* 0 <= tv_nsec < NSEC_PER_SEC
|
||||
* For negative values only the tv_sec field is negative !
|
||||
*/
|
||||
static inline void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
|
||||
{
|
||||
while (nsec >= NSEC_PER_SEC) {
|
||||
/*
|
||||
* The following asm() prevents the compiler from
|
||||
* optimising this loop into a modulo operation. See
|
||||
* also __iter_div_u64_rem() in include/linux/time.h
|
||||
*/
|
||||
asm("" : "+rm"(nsec));
|
||||
nsec -= NSEC_PER_SEC;
|
||||
++sec;
|
||||
}
|
||||
while (nsec < 0) {
|
||||
asm("" : "+rm"(nsec));
|
||||
nsec += NSEC_PER_SEC;
|
||||
--sec;
|
||||
}
|
||||
ts->tv_sec = sec;
|
||||
ts->tv_nsec = nsec;
|
||||
}
|
||||
|
||||
/*
|
||||
* timespec_add_safe assumes both values are positive and checks
|
||||
* for overflow. It will return TIME_T_MAX if the reutrn would be
|
||||
* smaller then either of the arguments.
|
||||
*
|
||||
* Add two timespec values and do a safety check for overflow.
|
||||
* It's assumed that both values are valid (>= 0)
|
||||
*/
|
||||
extern struct timespec timespec_add_safe(const struct timespec lhs,
|
||||
const struct timespec rhs);
|
||||
static inline struct timespec timespec_add_safe(const struct timespec lhs,
|
||||
const struct timespec rhs)
|
||||
{
|
||||
struct timespec res;
|
||||
|
||||
set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
|
||||
lhs.tv_nsec + rhs.tv_nsec);
|
||||
|
||||
if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
|
||||
res.tv_sec = TIME_T_MAX;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
static inline struct timespec timespec_add(struct timespec lhs,
|
||||
@ -135,7 +218,28 @@ static inline bool timeval_valid(const struct timeval *tv)
|
||||
return true;
|
||||
}
|
||||
|
||||
extern struct timespec timespec_trunc(struct timespec t, unsigned gran);
|
||||
/**
|
||||
* timespec_trunc - Truncate timespec to a granularity
|
||||
* @t: Timespec
|
||||
* @gran: Granularity in ns.
|
||||
*
|
||||
* Truncate a timespec to a granularity. Always rounds down. gran must
|
||||
* not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
|
||||
*/
|
||||
static inline struct timespec timespec_trunc(struct timespec t, unsigned gran)
|
||||
{
|
||||
/* Avoid division in the common cases 1 ns and 1 s. */
|
||||
if (gran == 1) {
|
||||
/* nothing */
|
||||
} else if (gran == NSEC_PER_SEC) {
|
||||
t.tv_nsec = 0;
|
||||
} else if (gran > 1 && gran < NSEC_PER_SEC) {
|
||||
t.tv_nsec -= t.tv_nsec % gran;
|
||||
} else {
|
||||
WARN(1, "illegal file time granularity: %u", gran);
|
||||
}
|
||||
return t;
|
||||
}
|
||||
|
||||
/*
|
||||
* Validates if a timespec/timeval used to inject a time offset is valid.
|
||||
@ -251,19 +355,44 @@ static inline s64 timeval_to_ns(const struct timeval *tv)
|
||||
|
||||
/**
|
||||
* ns_to_timespec - Convert nanoseconds to timespec
|
||||
* @nsec: the nanoseconds value to be converted
|
||||
* @nsec: the nanoseconds value to be converted
|
||||
*
|
||||
* Returns the timespec representation of the nsec parameter.
|
||||
*/
|
||||
extern struct timespec ns_to_timespec(const s64 nsec);
|
||||
static inline struct timespec ns_to_timespec(const s64 nsec)
|
||||
{
|
||||
struct timespec ts;
|
||||
s32 rem;
|
||||
|
||||
if (!nsec)
|
||||
return (struct timespec) {0, 0};
|
||||
|
||||
ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
|
||||
if (unlikely(rem < 0)) {
|
||||
ts.tv_sec--;
|
||||
rem += NSEC_PER_SEC;
|
||||
}
|
||||
ts.tv_nsec = rem;
|
||||
|
||||
return ts;
|
||||
}
|
||||
|
||||
/**
|
||||
* ns_to_timeval - Convert nanoseconds to timeval
|
||||
* @nsec: the nanoseconds value to be converted
|
||||
* @nsec: the nanoseconds value to be converted
|
||||
*
|
||||
* Returns the timeval representation of the nsec parameter.
|
||||
*/
|
||||
extern struct timeval ns_to_timeval(const s64 nsec);
|
||||
static inline struct timeval ns_to_timeval(const s64 nsec)
|
||||
{
|
||||
struct timespec ts = ns_to_timespec(nsec);
|
||||
struct timeval tv;
|
||||
|
||||
tv.tv_sec = ts.tv_sec;
|
||||
tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
|
||||
|
||||
return tv;
|
||||
}
|
||||
|
||||
/**
|
||||
* timespec_add_ns - Adds nanoseconds to a timespec
|
||||
|
@ -133,7 +133,40 @@ static inline int timespec64_compare(const struct timespec64 *lhs, const struct
|
||||
return lhs->tv_nsec - rhs->tv_nsec;
|
||||
}
|
||||
|
||||
extern void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec);
|
||||
/**
|
||||
* set_normalized_timespec - set timespec sec and nsec parts and normalize
|
||||
*
|
||||
* @ts: pointer to timespec variable to be set
|
||||
* @sec: seconds to set
|
||||
* @nsec: nanoseconds to set
|
||||
*
|
||||
* Set seconds and nanoseconds field of a timespec variable and
|
||||
* normalize to the timespec storage format
|
||||
*
|
||||
* Note: The tv_nsec part is always in the range of
|
||||
* 0 <= tv_nsec < NSEC_PER_SEC
|
||||
* For negative values only the tv_sec field is negative !
|
||||
*/
|
||||
static inline void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
|
||||
{
|
||||
while (nsec >= NSEC_PER_SEC) {
|
||||
/*
|
||||
* The following asm() prevents the compiler from
|
||||
* optimising this loop into a modulo operation. See
|
||||
* also __iter_div_u64_rem() in include/linux/time.h
|
||||
*/
|
||||
asm("" : "+rm"(nsec));
|
||||
nsec -= NSEC_PER_SEC;
|
||||
++sec;
|
||||
}
|
||||
while (nsec < 0) {
|
||||
asm("" : "+rm"(nsec));
|
||||
nsec += NSEC_PER_SEC;
|
||||
--sec;
|
||||
}
|
||||
ts->tv_sec = sec;
|
||||
ts->tv_nsec = nsec;
|
||||
}
|
||||
|
||||
static inline struct timespec64 timespec64_add(struct timespec64 lhs,
|
||||
struct timespec64 rhs)
|
||||
@ -198,11 +231,27 @@ static inline s64 timespec64_to_ns(const struct timespec64 *ts)
|
||||
|
||||
/**
|
||||
* ns_to_timespec64 - Convert nanoseconds to timespec64
|
||||
* @nsec: the nanoseconds value to be converted
|
||||
* @nsec: the nanoseconds value to be converted
|
||||
*
|
||||
* Returns the timespec64 representation of the nsec parameter.
|
||||
*/
|
||||
extern struct timespec64 ns_to_timespec64(const s64 nsec);
|
||||
static inline struct timespec64 ns_to_timespec64(const s64 nsec)
|
||||
{
|
||||
struct timespec64 ts;
|
||||
s32 rem;
|
||||
|
||||
if (!nsec)
|
||||
return (struct timespec64) {0, 0};
|
||||
|
||||
ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
|
||||
if (unlikely(rem < 0)) {
|
||||
ts.tv_sec--;
|
||||
rem += NSEC_PER_SEC;
|
||||
}
|
||||
ts.tv_nsec = rem;
|
||||
|
||||
return ts;
|
||||
}
|
||||
|
||||
/**
|
||||
* timespec64_add_ns - Adds nanoseconds to a timespec64
|
||||
|
@ -335,543 +335,6 @@ COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Convert jiffies to milliseconds and back.
|
||||
*
|
||||
* Avoid unnecessary multiplications/divisions in the
|
||||
* two most common HZ cases:
|
||||
*/
|
||||
unsigned int jiffies_to_msecs(const unsigned long j)
|
||||
{
|
||||
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
|
||||
return (MSEC_PER_SEC / HZ) * j;
|
||||
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
|
||||
return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
|
||||
#else
|
||||
# if BITS_PER_LONG == 32
|
||||
return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
|
||||
HZ_TO_MSEC_SHR32;
|
||||
# else
|
||||
return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
|
||||
# endif
|
||||
#endif
|
||||
}
|
||||
EXPORT_SYMBOL(jiffies_to_msecs);
|
||||
|
||||
unsigned int jiffies_to_usecs(const unsigned long j)
|
||||
{
|
||||
/*
|
||||
* Hz usually doesn't go much further MSEC_PER_SEC.
|
||||
* jiffies_to_usecs() and usecs_to_jiffies() depend on that.
|
||||
*/
|
||||
BUILD_BUG_ON(HZ > USEC_PER_SEC);
|
||||
|
||||
#if !(USEC_PER_SEC % HZ)
|
||||
return (USEC_PER_SEC / HZ) * j;
|
||||
#else
|
||||
# if BITS_PER_LONG == 32
|
||||
return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
|
||||
# else
|
||||
return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
|
||||
# endif
|
||||
#endif
|
||||
}
|
||||
EXPORT_SYMBOL(jiffies_to_usecs);
|
||||
|
||||
/**
|
||||
* timespec_trunc - Truncate timespec to a granularity
|
||||
* @t: Timespec
|
||||
* @gran: Granularity in ns.
|
||||
*
|
||||
* Truncate a timespec to a granularity. Always rounds down. gran must
|
||||
* not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
|
||||
*/
|
||||
struct timespec timespec_trunc(struct timespec t, unsigned gran)
|
||||
{
|
||||
/* Avoid division in the common cases 1 ns and 1 s. */
|
||||
if (gran == 1) {
|
||||
/* nothing */
|
||||
} else if (gran == NSEC_PER_SEC) {
|
||||
t.tv_nsec = 0;
|
||||
} else if (gran > 1 && gran < NSEC_PER_SEC) {
|
||||
t.tv_nsec -= t.tv_nsec % gran;
|
||||
} else {
|
||||
WARN(1, "illegal file time granularity: %u", gran);
|
||||
}
|
||||
return t;
|
||||
}
|
||||
EXPORT_SYMBOL(timespec_trunc);
|
||||
|
||||
/*
|
||||
* mktime64 - Converts date to seconds.
|
||||
* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
|
||||
* Assumes input in normal date format, i.e. 1980-12-31 23:59:59
|
||||
* => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
|
||||
*
|
||||
* [For the Julian calendar (which was used in Russia before 1917,
|
||||
* Britain & colonies before 1752, anywhere else before 1582,
|
||||
* and is still in use by some communities) leave out the
|
||||
* -year/100+year/400 terms, and add 10.]
|
||||
*
|
||||
* This algorithm was first published by Gauss (I think).
|
||||
*
|
||||
* A leap second can be indicated by calling this function with sec as
|
||||
* 60 (allowable under ISO 8601). The leap second is treated the same
|
||||
* as the following second since they don't exist in UNIX time.
|
||||
*
|
||||
* An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
|
||||
* tomorrow - (allowable under ISO 8601) is supported.
|
||||
*/
|
||||
time64_t mktime64(const unsigned int year0, const unsigned int mon0,
|
||||
const unsigned int day, const unsigned int hour,
|
||||
const unsigned int min, const unsigned int sec)
|
||||
{
|
||||
unsigned int mon = mon0, year = year0;
|
||||
|
||||
/* 1..12 -> 11,12,1..10 */
|
||||
if (0 >= (int) (mon -= 2)) {
|
||||
mon += 12; /* Puts Feb last since it has leap day */
|
||||
year -= 1;
|
||||
}
|
||||
|
||||
return ((((time64_t)
|
||||
(year/4 - year/100 + year/400 + 367*mon/12 + day) +
|
||||
year*365 - 719499
|
||||
)*24 + hour /* now have hours - midnight tomorrow handled here */
|
||||
)*60 + min /* now have minutes */
|
||||
)*60 + sec; /* finally seconds */
|
||||
}
|
||||
EXPORT_SYMBOL(mktime64);
|
||||
|
||||
/**
|
||||
* set_normalized_timespec - set timespec sec and nsec parts and normalize
|
||||
*
|
||||
* @ts: pointer to timespec variable to be set
|
||||
* @sec: seconds to set
|
||||
* @nsec: nanoseconds to set
|
||||
*
|
||||
* Set seconds and nanoseconds field of a timespec variable and
|
||||
* normalize to the timespec storage format
|
||||
*
|
||||
* Note: The tv_nsec part is always in the range of
|
||||
* 0 <= tv_nsec < NSEC_PER_SEC
|
||||
* For negative values only the tv_sec field is negative !
|
||||
*/
|
||||
void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
|
||||
{
|
||||
while (nsec >= NSEC_PER_SEC) {
|
||||
/*
|
||||
* The following asm() prevents the compiler from
|
||||
* optimising this loop into a modulo operation. See
|
||||
* also __iter_div_u64_rem() in include/linux/time.h
|
||||
*/
|
||||
asm("" : "+rm"(nsec));
|
||||
nsec -= NSEC_PER_SEC;
|
||||
++sec;
|
||||
}
|
||||
while (nsec < 0) {
|
||||
asm("" : "+rm"(nsec));
|
||||
nsec += NSEC_PER_SEC;
|
||||
--sec;
|
||||
}
|
||||
ts->tv_sec = sec;
|
||||
ts->tv_nsec = nsec;
|
||||
}
|
||||
EXPORT_SYMBOL(set_normalized_timespec);
|
||||
|
||||
/**
|
||||
* ns_to_timespec - Convert nanoseconds to timespec
|
||||
* @nsec: the nanoseconds value to be converted
|
||||
*
|
||||
* Returns the timespec representation of the nsec parameter.
|
||||
*/
|
||||
struct timespec ns_to_timespec(const s64 nsec)
|
||||
{
|
||||
struct timespec ts;
|
||||
s32 rem;
|
||||
|
||||
if (!nsec)
|
||||
return (struct timespec) {0, 0};
|
||||
|
||||
ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
|
||||
if (unlikely(rem < 0)) {
|
||||
ts.tv_sec--;
|
||||
rem += NSEC_PER_SEC;
|
||||
}
|
||||
ts.tv_nsec = rem;
|
||||
|
||||
return ts;
|
||||
}
|
||||
EXPORT_SYMBOL(ns_to_timespec);
|
||||
|
||||
/**
|
||||
* ns_to_timeval - Convert nanoseconds to timeval
|
||||
* @nsec: the nanoseconds value to be converted
|
||||
*
|
||||
* Returns the timeval representation of the nsec parameter.
|
||||
*/
|
||||
struct timeval ns_to_timeval(const s64 nsec)
|
||||
{
|
||||
struct timespec ts = ns_to_timespec(nsec);
|
||||
struct timeval tv;
|
||||
|
||||
tv.tv_sec = ts.tv_sec;
|
||||
tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
|
||||
|
||||
return tv;
|
||||
}
|
||||
EXPORT_SYMBOL(ns_to_timeval);
|
||||
|
||||
#if BITS_PER_LONG == 32
|
||||
/**
|
||||
* set_normalized_timespec - set timespec sec and nsec parts and normalize
|
||||
*
|
||||
* @ts: pointer to timespec variable to be set
|
||||
* @sec: seconds to set
|
||||
* @nsec: nanoseconds to set
|
||||
*
|
||||
* Set seconds and nanoseconds field of a timespec variable and
|
||||
* normalize to the timespec storage format
|
||||
*
|
||||
* Note: The tv_nsec part is always in the range of
|
||||
* 0 <= tv_nsec < NSEC_PER_SEC
|
||||
* For negative values only the tv_sec field is negative !
|
||||
*/
|
||||
void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
|
||||
{
|
||||
while (nsec >= NSEC_PER_SEC) {
|
||||
/*
|
||||
* The following asm() prevents the compiler from
|
||||
* optimising this loop into a modulo operation. See
|
||||
* also __iter_div_u64_rem() in include/linux/time.h
|
||||
*/
|
||||
asm("" : "+rm"(nsec));
|
||||
nsec -= NSEC_PER_SEC;
|
||||
++sec;
|
||||
}
|
||||
while (nsec < 0) {
|
||||
asm("" : "+rm"(nsec));
|
||||
nsec += NSEC_PER_SEC;
|
||||
--sec;
|
||||
}
|
||||
ts->tv_sec = sec;
|
||||
ts->tv_nsec = nsec;
|
||||
}
|
||||
EXPORT_SYMBOL(set_normalized_timespec64);
|
||||
|
||||
/**
|
||||
* ns_to_timespec64 - Convert nanoseconds to timespec64
|
||||
* @nsec: the nanoseconds value to be converted
|
||||
*
|
||||
* Returns the timespec64 representation of the nsec parameter.
|
||||
*/
|
||||
struct timespec64 ns_to_timespec64(const s64 nsec)
|
||||
{
|
||||
struct timespec64 ts;
|
||||
s32 rem;
|
||||
|
||||
if (!nsec)
|
||||
return (struct timespec64) {0, 0};
|
||||
|
||||
ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
|
||||
if (unlikely(rem < 0)) {
|
||||
ts.tv_sec--;
|
||||
rem += NSEC_PER_SEC;
|
||||
}
|
||||
ts.tv_nsec = rem;
|
||||
|
||||
return ts;
|
||||
}
|
||||
EXPORT_SYMBOL(ns_to_timespec64);
|
||||
#endif
|
||||
/**
|
||||
* msecs_to_jiffies: - convert milliseconds to jiffies
|
||||
* @m: time in milliseconds
|
||||
*
|
||||
* conversion is done as follows:
|
||||
*
|
||||
* - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
|
||||
*
|
||||
* - 'too large' values [that would result in larger than
|
||||
* MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
|
||||
*
|
||||
* - all other values are converted to jiffies by either multiplying
|
||||
* the input value by a factor or dividing it with a factor and
|
||||
* handling any 32-bit overflows.
|
||||
* for the details see __msecs_to_jiffies()
|
||||
*
|
||||
* msecs_to_jiffies() checks for the passed in value being a constant
|
||||
* via __builtin_constant_p() allowing gcc to eliminate most of the
|
||||
* code, __msecs_to_jiffies() is called if the value passed does not
|
||||
* allow constant folding and the actual conversion must be done at
|
||||
* runtime.
|
||||
* the _msecs_to_jiffies helpers are the HZ dependent conversion
|
||||
* routines found in include/linux/jiffies.h
|
||||
*/
|
||||
unsigned long __msecs_to_jiffies(const unsigned int m)
|
||||
{
|
||||
/*
|
||||
* Negative value, means infinite timeout:
|
||||
*/
|
||||
if ((int)m < 0)
|
||||
return MAX_JIFFY_OFFSET;
|
||||
return _msecs_to_jiffies(m);
|
||||
}
|
||||
EXPORT_SYMBOL(__msecs_to_jiffies);
|
||||
|
||||
unsigned long __usecs_to_jiffies(const unsigned int u)
|
||||
{
|
||||
if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
|
||||
return MAX_JIFFY_OFFSET;
|
||||
return _usecs_to_jiffies(u);
|
||||
}
|
||||
EXPORT_SYMBOL(__usecs_to_jiffies);
|
||||
|
||||
/*
|
||||
* The TICK_NSEC - 1 rounds up the value to the next resolution. Note
|
||||
* that a remainder subtract here would not do the right thing as the
|
||||
* resolution values don't fall on second boundries. I.e. the line:
|
||||
* nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
|
||||
* Note that due to the small error in the multiplier here, this
|
||||
* rounding is incorrect for sufficiently large values of tv_nsec, but
|
||||
* well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
|
||||
* OK.
|
||||
*
|
||||
* Rather, we just shift the bits off the right.
|
||||
*
|
||||
* The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
|
||||
* value to a scaled second value.
|
||||
*/
|
||||
static unsigned long
|
||||
__timespec64_to_jiffies(u64 sec, long nsec)
|
||||
{
|
||||
nsec = nsec + TICK_NSEC - 1;
|
||||
|
||||
if (sec >= MAX_SEC_IN_JIFFIES){
|
||||
sec = MAX_SEC_IN_JIFFIES;
|
||||
nsec = 0;
|
||||
}
|
||||
return ((sec * SEC_CONVERSION) +
|
||||
(((u64)nsec * NSEC_CONVERSION) >>
|
||||
(NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
|
||||
|
||||
}
|
||||
|
||||
static unsigned long
|
||||
__timespec_to_jiffies(unsigned long sec, long nsec)
|
||||
{
|
||||
return __timespec64_to_jiffies((u64)sec, nsec);
|
||||
}
|
||||
|
||||
unsigned long
|
||||
timespec64_to_jiffies(const struct timespec64 *value)
|
||||
{
|
||||
return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
|
||||
}
|
||||
EXPORT_SYMBOL(timespec64_to_jiffies);
|
||||
|
||||
void
|
||||
jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
|
||||
{
|
||||
/*
|
||||
* Convert jiffies to nanoseconds and separate with
|
||||
* one divide.
|
||||
*/
|
||||
u32 rem;
|
||||
value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
|
||||
NSEC_PER_SEC, &rem);
|
||||
value->tv_nsec = rem;
|
||||
}
|
||||
EXPORT_SYMBOL(jiffies_to_timespec64);
|
||||
|
||||
/*
|
||||
* We could use a similar algorithm to timespec_to_jiffies (with a
|
||||
* different multiplier for usec instead of nsec). But this has a
|
||||
* problem with rounding: we can't exactly add TICK_NSEC - 1 to the
|
||||
* usec value, since it's not necessarily integral.
|
||||
*
|
||||
* We could instead round in the intermediate scaled representation
|
||||
* (i.e. in units of 1/2^(large scale) jiffies) but that's also
|
||||
* perilous: the scaling introduces a small positive error, which
|
||||
* combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
|
||||
* units to the intermediate before shifting) leads to accidental
|
||||
* overflow and overestimates.
|
||||
*
|
||||
* At the cost of one additional multiplication by a constant, just
|
||||
* use the timespec implementation.
|
||||
*/
|
||||
unsigned long
|
||||
timeval_to_jiffies(const struct timeval *value)
|
||||
{
|
||||
return __timespec_to_jiffies(value->tv_sec,
|
||||
value->tv_usec * NSEC_PER_USEC);
|
||||
}
|
||||
EXPORT_SYMBOL(timeval_to_jiffies);
|
||||
|
||||
void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
|
||||
{
|
||||
/*
|
||||
* Convert jiffies to nanoseconds and separate with
|
||||
* one divide.
|
||||
*/
|
||||
u32 rem;
|
||||
|
||||
value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
|
||||
NSEC_PER_SEC, &rem);
|
||||
value->tv_usec = rem / NSEC_PER_USEC;
|
||||
}
|
||||
EXPORT_SYMBOL(jiffies_to_timeval);
|
||||
|
||||
/*
|
||||
* Convert jiffies/jiffies_64 to clock_t and back.
|
||||
*/
|
||||
clock_t jiffies_to_clock_t(unsigned long x)
|
||||
{
|
||||
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
|
||||
# if HZ < USER_HZ
|
||||
return x * (USER_HZ / HZ);
|
||||
# else
|
||||
return x / (HZ / USER_HZ);
|
||||
# endif
|
||||
#else
|
||||
return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
|
||||
#endif
|
||||
}
|
||||
EXPORT_SYMBOL(jiffies_to_clock_t);
|
||||
|
||||
unsigned long clock_t_to_jiffies(unsigned long x)
|
||||
{
|
||||
#if (HZ % USER_HZ)==0
|
||||
if (x >= ~0UL / (HZ / USER_HZ))
|
||||
return ~0UL;
|
||||
return x * (HZ / USER_HZ);
|
||||
#else
|
||||
/* Don't worry about loss of precision here .. */
|
||||
if (x >= ~0UL / HZ * USER_HZ)
|
||||
return ~0UL;
|
||||
|
||||
/* .. but do try to contain it here */
|
||||
return div_u64((u64)x * HZ, USER_HZ);
|
||||
#endif
|
||||
}
|
||||
EXPORT_SYMBOL(clock_t_to_jiffies);
|
||||
|
||||
u64 jiffies_64_to_clock_t(u64 x)
|
||||
{
|
||||
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
|
||||
# if HZ < USER_HZ
|
||||
x = div_u64(x * USER_HZ, HZ);
|
||||
# elif HZ > USER_HZ
|
||||
x = div_u64(x, HZ / USER_HZ);
|
||||
# else
|
||||
/* Nothing to do */
|
||||
# endif
|
||||
#else
|
||||
/*
|
||||
* There are better ways that don't overflow early,
|
||||
* but even this doesn't overflow in hundreds of years
|
||||
* in 64 bits, so..
|
||||
*/
|
||||
x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
|
||||
#endif
|
||||
return x;
|
||||
}
|
||||
EXPORT_SYMBOL(jiffies_64_to_clock_t);
|
||||
|
||||
u64 nsec_to_clock_t(u64 x)
|
||||
{
|
||||
#if (NSEC_PER_SEC % USER_HZ) == 0
|
||||
return div_u64(x, NSEC_PER_SEC / USER_HZ);
|
||||
#elif (USER_HZ % 512) == 0
|
||||
return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
|
||||
#else
|
||||
/*
|
||||
* max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
|
||||
* overflow after 64.99 years.
|
||||
* exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
|
||||
*/
|
||||
return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
|
||||
#endif
|
||||
}
|
||||
|
||||
u64 jiffies64_to_nsecs(u64 j)
|
||||
{
|
||||
#if !(NSEC_PER_SEC % HZ)
|
||||
return (NSEC_PER_SEC / HZ) * j;
|
||||
# else
|
||||
return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
|
||||
#endif
|
||||
}
|
||||
EXPORT_SYMBOL(jiffies64_to_nsecs);
|
||||
|
||||
/**
|
||||
* nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
|
||||
*
|
||||
* @n: nsecs in u64
|
||||
*
|
||||
* Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
|
||||
* And this doesn't return MAX_JIFFY_OFFSET since this function is designed
|
||||
* for scheduler, not for use in device drivers to calculate timeout value.
|
||||
*
|
||||
* note:
|
||||
* NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
|
||||
* ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
|
||||
*/
|
||||
u64 nsecs_to_jiffies64(u64 n)
|
||||
{
|
||||
#if (NSEC_PER_SEC % HZ) == 0
|
||||
/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
|
||||
return div_u64(n, NSEC_PER_SEC / HZ);
|
||||
#elif (HZ % 512) == 0
|
||||
/* overflow after 292 years if HZ = 1024 */
|
||||
return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
|
||||
#else
|
||||
/*
|
||||
* Generic case - optimized for cases where HZ is a multiple of 3.
|
||||
* overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
|
||||
*/
|
||||
return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
|
||||
#endif
|
||||
}
|
||||
EXPORT_SYMBOL(nsecs_to_jiffies64);
|
||||
|
||||
/**
|
||||
* nsecs_to_jiffies - Convert nsecs in u64 to jiffies
|
||||
*
|
||||
* @n: nsecs in u64
|
||||
*
|
||||
* Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
|
||||
* And this doesn't return MAX_JIFFY_OFFSET since this function is designed
|
||||
* for scheduler, not for use in device drivers to calculate timeout value.
|
||||
*
|
||||
* note:
|
||||
* NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
|
||||
* ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
|
||||
*/
|
||||
unsigned long nsecs_to_jiffies(u64 n)
|
||||
{
|
||||
return (unsigned long)nsecs_to_jiffies64(n);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
|
||||
|
||||
/*
|
||||
* Add two timespec values and do a safety check for overflow.
|
||||
* It's assumed that both values are valid (>= 0)
|
||||
*/
|
||||
struct timespec timespec_add_safe(const struct timespec lhs,
|
||||
const struct timespec rhs)
|
||||
{
|
||||
struct timespec res;
|
||||
|
||||
set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
|
||||
lhs.tv_nsec + rhs.tv_nsec);
|
||||
|
||||
if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
|
||||
res.tv_sec = TIME_T_MAX;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
/*
|
||||
* Add two timespec64 values and do a safety check for overflow.
|
||||
* It's assumed that both values are valid (>= 0).
|
||||
|
Loading…
x
Reference in New Issue
Block a user