The commit facd8b80c67a3cf64a467c4a2ac5fb31f2e6745b
("irq: Sanitize invoke_softirq") converted irq exit
calls of do_softirq() to __do_softirq() on all architectures,
assuming it was only used there for its irq disablement
properties.
But as a side effect, the softirqs processed in the end
of the hardirq are always called on the inline current
stack that is used by irq_exit() instead of the softirq
stack provided by the archs that override do_softirq().
The result is mostly safe if the architecture runs irq_exit()
on a separate irq stack because then softirqs are processed
on that same stack that is near empty at this stage (assuming
hardirq aren't nesting).
Otherwise irq_exit() runs in the task stack and so does the softirq
too. The interrupted call stack can be randomly deep already and
the softirq can dig through it even further. To add insult to the
injury, this softirq can be interrupted by a new hardirq, maximizing
the chances for a stack overrun as reported in powerpc for example:
do_IRQ: stack overflow: 1920
CPU: 0 PID: 1602 Comm: qemu-system-ppc Not tainted 3.10.4-300.1.fc19.ppc64p7 #1
Call Trace:
[c0000000050a8740] .show_stack+0x130/0x200 (unreliable)
[c0000000050a8810] .dump_stack+0x28/0x3c
[c0000000050a8880] .do_IRQ+0x2b8/0x2c0
[c0000000050a8930] hardware_interrupt_common+0x154/0x180
--- Exception: 501 at .cp_start_xmit+0x3a4/0x820 [8139cp]
LR = .cp_start_xmit+0x390/0x820 [8139cp]
[c0000000050a8d40] .dev_hard_start_xmit+0x394/0x640
[c0000000050a8e00] .sch_direct_xmit+0x110/0x260
[c0000000050a8ea0] .dev_queue_xmit+0x260/0x630
[c0000000050a8f40] .br_dev_queue_push_xmit+0xc4/0x130 [bridge]
[c0000000050a8fc0] .br_dev_xmit+0x198/0x270 [bridge]
[c0000000050a9070] .dev_hard_start_xmit+0x394/0x640
[c0000000050a9130] .dev_queue_xmit+0x428/0x630
[c0000000050a91d0] .ip_finish_output+0x2a4/0x550
[c0000000050a9290] .ip_local_out+0x50/0x70
[c0000000050a9310] .ip_queue_xmit+0x148/0x420
[c0000000050a93b0] .tcp_transmit_skb+0x4e4/0xaf0
[c0000000050a94a0] .__tcp_ack_snd_check+0x7c/0xf0
[c0000000050a9520] .tcp_rcv_established+0x1e8/0x930
[c0000000050a95f0] .tcp_v4_do_rcv+0x21c/0x570
[c0000000050a96c0] .tcp_v4_rcv+0x734/0x930
[c0000000050a97a0] .ip_local_deliver_finish+0x184/0x360
[c0000000050a9840] .ip_rcv_finish+0x148/0x400
[c0000000050a98d0] .__netif_receive_skb_core+0x4f8/0xb00
[c0000000050a99d0] .netif_receive_skb+0x44/0x110
[c0000000050a9a70] .br_handle_frame_finish+0x2bc/0x3f0 [bridge]
[c0000000050a9b20] .br_nf_pre_routing_finish+0x2ac/0x420 [bridge]
[c0000000050a9bd0] .br_nf_pre_routing+0x4dc/0x7d0 [bridge]
[c0000000050a9c70] .nf_iterate+0x114/0x130
[c0000000050a9d30] .nf_hook_slow+0xb4/0x1e0
[c0000000050a9e00] .br_handle_frame+0x290/0x330 [bridge]
[c0000000050a9ea0] .__netif_receive_skb_core+0x34c/0xb00
[c0000000050a9fa0] .netif_receive_skb+0x44/0x110
[c0000000050aa040] .napi_gro_receive+0xe8/0x120
[c0000000050aa0c0] .cp_rx_poll+0x31c/0x590 [8139cp]
[c0000000050aa1d0] .net_rx_action+0x1dc/0x310
[c0000000050aa2b0] .__do_softirq+0x158/0x330
[c0000000050aa3b0] .irq_exit+0xc8/0x110
[c0000000050aa430] .do_IRQ+0xdc/0x2c0
[c0000000050aa4e0] hardware_interrupt_common+0x154/0x180
--- Exception: 501 at .bad_range+0x1c/0x110
LR = .get_page_from_freelist+0x908/0xbb0
[c0000000050aa7d0] .list_del+0x18/0x50 (unreliable)
[c0000000050aa850] .get_page_from_freelist+0x908/0xbb0
[c0000000050aa9e0] .__alloc_pages_nodemask+0x21c/0xae0
[c0000000050aaba0] .alloc_pages_vma+0xd0/0x210
[c0000000050aac60] .handle_pte_fault+0x814/0xb70
[c0000000050aad50] .__get_user_pages+0x1a4/0x640
[c0000000050aae60] .get_user_pages_fast+0xec/0x160
[c0000000050aaf10] .__gfn_to_pfn_memslot+0x3b0/0x430 [kvm]
[c0000000050aafd0] .kvmppc_gfn_to_pfn+0x64/0x130 [kvm]
[c0000000050ab070] .kvmppc_mmu_map_page+0x94/0x530 [kvm]
[c0000000050ab190] .kvmppc_handle_pagefault+0x174/0x610 [kvm]
[c0000000050ab270] .kvmppc_handle_exit_pr+0x464/0x9b0 [kvm]
[c0000000050ab320] kvm_start_lightweight+0x1ec/0x1fc [kvm]
[c0000000050ab4f0] .kvmppc_vcpu_run_pr+0x168/0x3b0 [kvm]
[c0000000050ab9c0] .kvmppc_vcpu_run+0xc8/0xf0 [kvm]
[c0000000050aba50] .kvm_arch_vcpu_ioctl_run+0x5c/0x1a0 [kvm]
[c0000000050abae0] .kvm_vcpu_ioctl+0x478/0x730 [kvm]
[c0000000050abc90] .do_vfs_ioctl+0x4ec/0x7c0
[c0000000050abd80] .SyS_ioctl+0xd4/0xf0
[c0000000050abe30] syscall_exit+0x0/0x98
Since this is a regression, this patch proposes a minimalistic
and low-risk solution by blindly forcing the hardirq exit processing of
softirqs on the softirq stack. This way we should reduce significantly
the opportunities for task stack overflow dug by softirqs.
Longer term solutions may involve extending the hardirq stack coverage to
irq_exit(), etc...
Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: #3.9.. <stable@vger.kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@au1.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@au1.ibm.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
"case 0" in free_pid() assumes that disable_pid_allocation() should
clear PIDNS_HASH_ADDING before the last pid goes away.
However this doesn't happen if the first fork() fails to create the
child reaper which should call disable_pid_allocation().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If /proc/sys/kernel/core_pattern contains only "|", a NULL pointer
dereference happens upon core dump because argv_split("") returns
argv[0] == NULL.
This bug was once fixed by commit 264b83c07a84 ("usermodehelper: check
subprocess_info->path != NULL") but was by error reintroduced by commit
7f57cfa4e2aa ("usermodehelper: kill the sub_info->path[0] check").
This bug seems to exist since 2.6.19 (the version which core dump to
pipe was added). Depending on kernel version and config, some side
effect might happen immediately after this oops (e.g. kernel panic with
2.6.32-358.18.1.el6).
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recent commit 8fd37a4 (PM / hibernate: Create memory bitmaps after
freezing user space) broke the resume part of the user space driven
hibernation (s2disk), because I forgot that the resume utility
loaded the image into memory without freezing user space (it still
freezes tasks after loading the image). This means that during user
space driven resume we need to create the memory bitmaps at the
"device open" time rather than at the "freeze tasks" time, so make
that happen (that's a special case anyway, so it needs to be treated
in a special way).
Reported-and-tested-by: Ronald <ronald645@gmail.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The CONFIG_64BIT requirement on vtime can finally be removed
since we now depend on HAVE_VIRT_CPU_ACCOUNTING_GEN which
already takes care of the arch ability to handle nsecs based
cputime_t safely.
Signed-off-by: Kevin Hilman <khilman@linaro.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Arm Linux <linux-arm-kernel@lists.infradead.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
With VIRT_CPU_ACCOUNTING_GEN, cputime_t becomes 64-bit. In order
to use that feature, arch code should be audited to ensure there are no
races in concurrent read/write of cputime_t. For example,
reading/writing 64-bit cputime_t on some 32-bit arches may require
multiple accesses for low and high value parts, so proper locking
is needed to protect against concurrent accesses.
Therefore, add CONFIG_HAVE_VIRT_CPU_ACCOUNTING_GEN which arches can
enable after they've been audited for potential races.
This option is automatically enabled on 64-bit platforms.
Feature requested by Frederic Weisbecker.
Signed-off-by: Kevin Hilman <khilman@linaro.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Arm Linux <linux-arm-kernel@lists.infradead.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Pull scheduler, timer and x86 fixes from Ingo Molnar:
- A context tracking ARM build and functional fix
- A handful of ARM clocksource/clockevent driver fixes
- An AMD microcode patch level sysfs reporting fixlet
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
arm: Fix build error with context tracking calls
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
clocksource: em_sti: Set cpu_possible_mask to fix SMP broadcast
clocksource: of: Respect device tree node status
clocksource: exynos_mct: Set IRQ affinity when the CPU goes online
arm: clocksource: mvebu: Use the main timer as clock source from DT
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode/AMD: Fix patch level reporting for family 15h
Commit 6072ddc8520b ("kernel: replace strict_strto*() with kstrto*()")
broke the handling of signed integer types, fix it.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Reported-by: Christian Kujau <lists@nerdbynature.de>
Tested-by: Christian Kujau <lists@nerdbynature.de>
Cc: Jingoo Han <jg1.han@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ad65782fba50 (context_tracking: Optimize main APIs off case
with static key) converted context tracking main APIs to inline
function and left ARM asm callers behind.
This can be easily fixed by making ARM calling the post static
keys context tracking function. We just need to replicate the
static key checks there. We'll remove these later when ARM will
support the context tracking static keys.
Reported-by: Guenter Roeck <linux@roeck-us.net>
Reported-by: Russell King <linux@arm.linux.org.uk>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Tested-by: Kevin Hilman <khilman@linaro.org>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Anil Kumar <anilk4.v@gmail.com>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Benoit Cousson <b-cousson@ti.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Kevin Hilman <khilman@linaro.org>
The dev_attrs field of struct bus_type is going away soon, dev_groups
should be used instead. This converts the pmu bus code to use
the correct field.
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull scheduler fixes from Ingo Molnar:
"Three small fixes"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/balancing: Fix cfs_rq->task_h_load calculation
sched/balancing: Fix 'local->avg_load > busiest->avg_load' case in fix_small_imbalance()
sched/balancing: Fix 'local->avg_load > sds->avg_load' case in calculate_imbalance()
Pull perf fixes from Ingo Molnar:
"Assorted standalone fixes"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel: Add model number for Avoton Silvermont
perf: Fix capabilities bitfield compatibility in 'struct perf_event_mmap_page'
perf/x86/intel/uncore: Don't use smp_processor_id() in validate_group()
perf: Update ABI comment
tools lib lk: Uninclude linux/magic.h in debugfs.c
perf tools: Fix old GCC build error in trace-event-parse.c:parse_proc_kallsyms()
perf probe: Fix finder to find lines of given function
perf session: Check for SIGINT in more loops
perf tools: Fix compile with libelf without get_phdrnum
perf tools: Fix buildid cache handling of kallsyms with kcore
perf annotate: Fix objdump line parsing offset validation
perf tools: Fill in new definitions for madvise()/mmap() flags
perf tools: Sharpen the libaudit dependencies test
Give the root user the ability to read the system keyring and put read
permission on the trusted keys added during boot. The latter is actually more
theoretical than real for the moment as asymmetric keys do not currently
provide a read operation.
Signed-off-by: Mimi Zohar <zohar@us.ibm.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Add KEY_FLAG_TRUSTED to indicate that a key either comes from a trusted source
or had a cryptographic signature chain that led back to a trusted key the
kernel already possessed.
Add KEY_FLAGS_TRUSTED_ONLY to indicate that a keyring will only accept links to
keys marked with KEY_FLAGS_TRUSTED.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Separate the kernel signature checking keyring from module signing so that it
can be used by code other than the module-signing code.
Signed-off-by: David Howells <dhowells@redhat.com>
Have make canonicalise the paths of the X.509 certificates before we sort them
as this allows $(sort) to better remove duplicates.
Signed-off-by: David Howells <dhowells@redhat.com>
Load all the files matching the pattern "*.x509" that are to be found in kernel
base source dir and base build dir into the module signing keyring.
The "extra_certificates" file is then redundant.
Signed-off-by: David Howells <dhowells@redhat.com>
Rename the arrays of public key parameters (public key algorithm names, hash
algorithm names and ID type names) so that the array name ends in "_name".
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Josh Boyer <jwboyer@redhat.com>
The old rcu_is_cpu_idle() function is just __rcu_is_watching() with
preemption disabled. This commit therefore renames rcu_is_cpu_idle()
to rcu_is_watching.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Commit e6b80a3b (rcu: Detect illegal rcu dereference in extended
quiescent state) exported the pre-existing rcu_is_cpu_idle() function
using EXPORT_SYMBOL(). However, this is inconsistent with the remaining
exports from RCU, which are all EXPORT_SYMBOL_GPL(). The current state
of affairs means that a non-GPL module could use rcu_is_cpu_idle(),
but in a CONFIG_TREE_PREEMPT_RCU=y kernel would be unable to invoke
rcu_read_lock() and rcu_read_unlock().
This commit therefore makes rcu_is_cpu_idle()'s export be consistent
with the rest of RCU, namely EXPORT_SYMBOL_GPL().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
There is currently no way for kernel code to determine whether it
is safe to enter an RCU read-side critical section, in other words,
whether or not RCU is paying attention to the currently running CPU.
Given the large and increasing quantity of code shared by the idle loop
and non-idle code, the this shortcoming is becoming increasingly painful.
This commit therefore adds __rcu_is_watching(), which returns true if
it is safe to enter an RCU read-side critical section on the currently
running CPU. This function is quite fast, using only a __this_cpu_read().
However, the caller must disable preemption.
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
If a non-lazy callback arrives on a CPU that has previously gone idle
with no non-lazy callbacks, invoke_rcu_core() forces the RCU core to
run. However, it does not update the conditions, which could result
in several closely spaced invocations of the RCU core, which in turn
could result in an excessively high context-switch rate and resulting
high overhead.
This commit therefore updates the ->all_lazy and ->nonlazy_posted_snap
fields to prevent closely spaced invocations.
Reported-by: Tibor Billes <tbilles@gmx.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Tibor Billes <tbilles@gmx.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
The rcu_try_advance_all_cbs() function is invoked on each attempted
entry to and every exit from idle. If this function determines that
there are callbacks ready to invoke, the caller will invoke the RCU
core, which in turn will result in a pair of context switches. If a
CPU enters and exits idle extremely frequently, this can result in
an excessive number of context switches and high CPU overhead.
This commit therefore causes rcu_try_advance_all_cbs() to throttle
itself, refusing to do work more than once per jiffy.
Reported-by: Tibor Billes <tbilles@gmx.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Tibor Billes <tbilles@gmx.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
The rcu_try_advance_all_cbs() function returns a bool saying whether or
not there are callbacks ready to invoke, but rcu_cleanup_after_idle()
rechecks this regardless. This commit therefore uses the value returned
by rcu_try_advance_all_cbs() instead of making rcu_cleanup_after_idle()
do this recheck.
Reported-by: Tibor Billes <tbilles@gmx.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Tibor Billes <tbilles@gmx.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
When using per-cpu preempt_count variables we need to save/restore the
preempt_count on context switch (into per task storage; for instance
the old thread_info::preempt_count variable) because of
PREEMPT_ACTIVE.
However, this means that on fork() the preempt_count value of the last
context switch gets copied and if we had a PREEMPT_ACTIVE switch right
before cloning a child task the child task will now too have
PREEMPT_ACTIVE set and start its life with an extra PREEMPT_ACTIVE
count.
Therefore we need to make init_task_preempt_count() unconditional;
this resets whatever preempt_count we inherited from our parent
process.
Doing so for !per-cpu implementations is harmless.
For !PREEMPT_COUNT kernels we need to be careful not to start life
with an increased preempt_count.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-4k0b7oy1rcdyzochwiixuwi9@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Rewrite the preempt_count macros in order to extract the 3 basic
preempt_count value modifiers:
__preempt_count_add()
__preempt_count_sub()
and the new:
__preempt_count_dec_and_test()
And since we're at it anyway, replace the unconventional
$op_preempt_count names with the more conventional preempt_count_$op.
Since these basic operators are equivalent to the previous _notrace()
variants, do away with the _notrace() versions.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-ewbpdbupy9xpsjhg960zwbv8@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We need a few special preempt_count accessors:
- task_preempt_count() for when we're interested in the preemption
count of another (non-running) task.
- init_task_preempt_count() for properly initializing the preemption
count.
- init_idle_preempt_count() a special case of the above for the idle
threads.
With these no generic code ever touches thread_info::preempt_count
anymore and architectures could choose to remove it.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-jf5swrio8l78j37d06fzmo4r@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In order to combine the preemption and need_resched test we need to
fold the need_resched information into the preempt_count value.
Since the NEED_RESCHED flag is set across CPUs this needs to be an
atomic operation, however we very much want to avoid making
preempt_count atomic, therefore we keep the existing TIF_NEED_RESCHED
infrastructure in place but at 3 sites test it and fold its value into
preempt_count; namely:
- resched_task() when setting TIF_NEED_RESCHED on the current task
- scheduler_ipi() when resched_task() sets TIF_NEED_RESCHED on a
remote task it follows it up with a reschedule IPI
and we can modify the cpu local preempt_count from
there.
- cpu_idle_loop() for when resched_task() found tsk_is_polling().
We use an inverted bitmask to indicate need_resched so that a 0 means
both need_resched and !atomic.
Also remove the barrier() in preempt_enable() between
preempt_enable_no_resched() and preempt_check_resched() to avoid
having to reload the preemption value and allow the compiler to use
the flags of the previuos decrement. I couldn't come up with any sane
reason for this barrier() to be there as preempt_enable_no_resched()
already has a barrier() before doing the decrement.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-7a7m5qqbn5pmwnd4wko9u6da@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Replace the single preempt_count() 'function' that's an lvalue with
two proper functions:
preempt_count() - returns the preempt_count value as rvalue
preempt_count_set() - Allows setting the preempt-count value
Also provide preempt_count_ptr() as a convenience wrapper to implement
all modifying operations.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-orxrbycjozopqfhb4dxdkdvb@git.kernel.org
[ Fixed build failure. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mike reported that commit 7d1a9417 ("x86: Use generic idle loop")
regressed several workloads and caused excessive reschedule
interrupts.
The patch in question failed to notice that the x86 code had an
inverted sense of the polling state versus the new generic code (x86:
default polling, generic: default !polling).
Fix the two prominent x86 mwait based idle drivers and introduce a few
new generic polling helpers (fixing the wrong smp_mb__after_clear_bit
usage).
Also switch the idle routines to using tif_need_resched() which is an
immediate TIF_NEED_RESCHED test as opposed to need_resched which will
end up being slightly different.
Reported-by: Mike Galbraith <bitbucket@online.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: lenb@kernel.org
Cc: tglx@linutronix.de
Link: http://lkml.kernel.org/n/tip-nc03imb0etuefmzybzj7sprf@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We're going to deprecate and remove set_need_resched() for it will do
the wrong thing. Make an exception for RCU and allow it to use
resched_cpu() which will do the right thing.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/n/tip-2eywnacjl1nllctl1nszqa5w@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We always know the rq used, let's just pass it around.
This seems to cut the size of scheduler core down a tiny bit:
Before:
[linux]$ size kernel/sched/core.o.orig
text data bss dec hex filename
62760 16130 3876 82766 1434e kernel/sched/core.o.orig
After:
[linux]$ size kernel/sched/core.o.patched
text data bss dec hex filename
62566 16130 3876 82572 1428c kernel/sched/core.o.patched
Probably speeds it up as well.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20130922142054.GA11499@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 1b3a5d02ee07 ("reboot: move arch/x86 reboot= handling to generic
kernel") did some cleanup for reboot= command line, but it made the
reboot_default inoperative.
The default value of variable reboot_default should be 1, and if command
line reboot= is not set, system will use the default reboot mode.
[akpm@linux-foundation.org: fix comment layout]
Signed-off-by: Li Fei <fei.li@intel.com>
Signed-off-by: liu chuansheng <chuansheng.liu@intel.com>
Acked-by: Robin Holt <robinmholt@linux.com>
Cc: <stable@vger.kernel.org> [3.11.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After commit 829199197a43 ("kernel/audit.c: avoid negative sleep
durations") audit emitters will block forever if userspace daemon cannot
handle backlog.
After the timeout the waiting loop turns into busy loop and runs until
daemon dies or returns back to work. This is a minimal patch for that
bug.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Richard Guy Briggs <rgb@redhat.com>
Cc: Eric Paris <eparis@redhat.com>
Cc: Chuck Anderson <chuck.anderson@oracle.com>
Cc: Dan Duval <dan.duval@oracle.com>
Cc: Dave Kleikamp <dave.kleikamp@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
watchdog_tresh controls how often nmi perf event counter checks per-cpu
hrtimer_interrupts counter and blows up if the counter hasn't changed
since the last check. The counter is updated by per-cpu
watchdog_hrtimer hrtimer which is scheduled with 2/5 watchdog_thresh
period which guarantees that hrtimer is scheduled 2 times per the main
period. Both hrtimer and perf event are started together when the
watchdog is enabled.
So far so good. But...
But what happens when watchdog_thresh is updated from sysctl handler?
proc_dowatchdog will set a new sampling period and hrtimer callback
(watchdog_timer_fn) will use the new value in the next round. The
problem, however, is that nobody tells the perf event that the sampling
period has changed so it is ticking with the period configured when it
has been set up.
This might result in an ear ripping dissonance between perf and hrtimer
parts if the watchdog_thresh is increased. And even worse it might lead
to KABOOM if the watchdog is configured to panic on such a spurious
lockup.
This patch fixes the issue by updating both nmi perf even counter and
hrtimers if the threshold value has changed.
The nmi one is disabled and then reinitialized from scratch. This has
an unpleasant side effect that the allocation of the new event might
fail theoretically so the hard lockup detector would be disabled for
such cpus. On the other hand such a memory allocation failure is very
unlikely because the original event is deallocated right before.
It would be much nicer if we just changed perf event period but there
doesn't seem to be any API to do that right now. It is also unfortunate
that perf_event_alloc uses GFP_KERNEL allocation unconditionally so we
cannot use on_each_cpu() and do the same thing from the per-cpu context.
The update from the current CPU should be safe because
perf_event_disable removes the event atomically before it clears the
per-cpu watchdog_ev so it cannot change anything under running handler
feet.
The hrtimer is simply restarted (thanks to Don Zickus who has pointed
this out) if it is queued because we cannot rely it will fire&adopt to
the new sampling period before a new nmi event triggers (when the
treshold is decreased).
[akpm@linux-foundation.org: the UP version of __smp_call_function_single ended up in the wrong place]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Don Zickus <dzickus@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Fabio Estevam <festevam@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
proc_dowatchdog doesn't synchronize multiple callers which might lead to
confusion when two parallel callers might confuse watchdog_enable_all_cpus
resp watchdog_disable_all_cpus (eg watchdog gets enabled even if
watchdog_thresh was set to 0 already).
This patch adds a local mutex which synchronizes callers to the sysctl
handler.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Don Zickus <dzickus@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add support for per-user_namespace registers of persistent per-UID kerberos
caches held within the kernel.
This allows the kerberos cache to be retained beyond the life of all a user's
processes so that the user's cron jobs can work.
The kerberos cache is envisioned as a keyring/key tree looking something like:
struct user_namespace
\___ .krb_cache keyring - The register
\___ _krb.0 keyring - Root's Kerberos cache
\___ _krb.5000 keyring - User 5000's Kerberos cache
\___ _krb.5001 keyring - User 5001's Kerberos cache
\___ tkt785 big_key - A ccache blob
\___ tkt12345 big_key - Another ccache blob
Or possibly:
struct user_namespace
\___ .krb_cache keyring - The register
\___ _krb.0 keyring - Root's Kerberos cache
\___ _krb.5000 keyring - User 5000's Kerberos cache
\___ _krb.5001 keyring - User 5001's Kerberos cache
\___ tkt785 keyring - A ccache
\___ krbtgt/REDHAT.COM@REDHAT.COM big_key
\___ http/REDHAT.COM@REDHAT.COM user
\___ afs/REDHAT.COM@REDHAT.COM user
\___ nfs/REDHAT.COM@REDHAT.COM user
\___ krbtgt/KERNEL.ORG@KERNEL.ORG big_key
\___ http/KERNEL.ORG@KERNEL.ORG big_key
What goes into a particular Kerberos cache is entirely up to userspace. Kernel
support is limited to giving you the Kerberos cache keyring that you want.
The user asks for their Kerberos cache by:
krb_cache = keyctl_get_krbcache(uid, dest_keyring);
The uid is -1 or the user's own UID for the user's own cache or the uid of some
other user's cache (requires CAP_SETUID). This permits rpc.gssd or whatever to
mess with the cache.
The cache returned is a keyring named "_krb.<uid>" that the possessor can read,
search, clear, invalidate, unlink from and add links to. Active LSMs get a
chance to rule on whether the caller is permitted to make a link.
Each uid's cache keyring is created when it first accessed and is given a
timeout that is extended each time this function is called so that the keyring
goes away after a while. The timeout is configurable by sysctl but defaults to
three days.
Each user_namespace struct gets a lazily-created keyring that serves as the
register. The cache keyrings are added to it. This means that standard key
search and garbage collection facilities are available.
The user_namespace struct's register goes away when it does and anything left
in it is then automatically gc'd.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Simo Sorce <simo@redhat.com>
cc: Serge E. Hallyn <serge.hallyn@ubuntu.com>
cc: Eric W. Biederman <ebiederm@xmission.com>
The only user of css_id was memcg, and it has been convered to use
cgroup->id, so kill css_id.
Signed-off-by: Li Zefan <lizefan@huwei.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Some architectures have sparse cpu mask. UltraSparc's cpuinfo for example:
CPU0: online
CPU2: online
So, set only possible CPUs when CONFIG_RCU_NOCB_CPU_ALL is enabled.
Also, check that user passes right 'rcu_nocbs=' option.
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
CC: Dipankar Sarma <dipankar@in.ibm.com>
[ paulmck: Fix pr_info() issue noted by scripts/checkpatch.pl. ]
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The event-tracing macros do not like bool tracing arguments, so this
commit makes them be of type char. This change has the knock-on effect
of making it illegal to pass a pointer into one of these arguments, so
also change rcutiny's first call to trace_rcu_batch_end() to convert
from pointer to boolean, prefixing with "!!".
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit adds event traces to track all of rcu_nocb_kthread()'s
blocking and awakening.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
One way to distinguish between NOCB and non-NOCB rcu_callback trace
events is that the former always print zero for the lazy and non-lazy
queue lengths. Unfortunately, this also means that we cannot see the NOCB
queue lengths. This commit therefore accesses the NOCB queue lengths,
but negates them. NOCB rcu_callback trace events should therefore have
negative queue lengths.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Match operand size per kbuild test robot's advice. ]
Lost wakeups from call_rcu() to the rcuo kthreads can result in hangs
that are difficult to diagnose. This commit therefore adds tracing to
help pin down the cause of these hangs.
Reported-by: Clark Williams <williams@redhat.com>
Reported-by: Carsten Emde <C.Emde@osadl.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Add const per kbuild test robot's advice. ]
This commit adds tracing to the normal grace-period request points.
These are rcu_gp_cleanup(), which checks for the need for another
grace period at the end of the previous grace period, and
rcu_start_gp_advanced(), which restarts RCU's state machine after
an idle period. These trace events are intended to help track down
bugs where RCU remains idle despite there being work for it to do.
Reported-by: Clark Williams <williams@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit adds tracing to the rcu_gp_kthread() function in order to
help trace down hangs potentially involving this kthread.
Reported-by: Clark Williams <williams@redhat.com>
Reported-by: Carsten Emde <C.Emde@osadl.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit applies ACCESS_ONCE() to an outside-of-lock access to
->gp_flags. Although it is hard to imagine any sane compiler messing
this particular case up, the documentation benefits are substantial.
Plus the definition of "sane compiler" grows ever looser.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Spurious wakeups in the force-quiescent-state loop in rcu_gp_kthread()
cause the timeout to be recalculated, which would prevent rcu_gp_fqs()
from ever being called. This would in turn would prevent the grace period
from ever ending for as long as there was at least one CPU in an extended
quiescent state that had not yet passed through a quiescent state.
This commit therefore avoids recalculating the timeout unless the
previous pass's call to wait_event_interruptible_timeout() actually
did time out, thus preventing the above scenario.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>