mirror of
https://github.com/rd-stuffs/msm-4.14.git
synced 2025-02-20 11:45:48 +08:00
26804 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
|
c41b7f8bef |
tracing: Add NULL checks for buffer in ring_buffer_free_read_page()
[ Upstream commit 3e4272b9954094907f16861199728f14002fcaf6 ] In a previous commit 7433632c9ff6, buffer, buffer->buffers and buffer->buffers[cpu] in ring_buffer_wake_waiters() can be NULL, and thus the related checks are added. However, in the same call stack, these variables are also used in ring_buffer_free_read_page(): tracing_buffers_release() ring_buffer_wake_waiters(iter->array_buffer->buffer) cpu_buffer = buffer->buffers[cpu] -> Add checks by previous commit ring_buffer_free_read_page(iter->array_buffer->buffer) cpu_buffer = buffer->buffers[cpu] -> No check Thus, to avod possible null-pointer derefernces, the related checks should be added. These results are reported by a static tool designed by myself. Link: https://lkml.kernel.org/r/20230113125501.760324-1-baijiaju1990@gmail.com Reported-by: TOTE Robot <oslab@tsinghua.edu.cn> Signed-off-by: Jia-Ju Bai <baijiaju1990@gmail.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
|
281c1cf41e |
irqdomain: Drop bogus fwspec-mapping error handling
commit e3b7ab025e931accdc2c12acf9b75c6197f1c062 upstream. In case a newly allocated IRQ ever ends up not having any associated struct irq_data it would not even be possible to dispose the mapping. Replace the bogus disposal with a WARN_ON(). This will also be used to fix a shared-interrupt mapping race, hence the CC-stable tag. Fixes: 1e2a7d78499e ("irqdomain: Don't set type when mapping an IRQ") Cc: stable@vger.kernel.org # 4.8 Tested-by: Hsin-Yi Wang <hsinyi@chromium.org> Tested-by: Mark-PK Tsai <mark-pk.tsai@mediatek.com> Signed-off-by: Johan Hovold <johan+linaro@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20230213104302.17307-4-johan+linaro@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
30b5600873 |
irqdomain: Fix disassociation race
commit 3f883c38f5628f46b30bccf090faec054088e262 upstream. The global irq_domain_mutex is held when mapping interrupts from non-hierarchical domains but currently not when disposing them. This specifically means that updates of the domain mapcount is racy (currently only used for statistics in debugfs). Make sure to hold the global irq_domain_mutex also when disposing mappings from non-hierarchical domains. Fixes: 9dc6be3d4193 ("genirq/irqdomain: Add map counter") Cc: stable@vger.kernel.org # 4.13 Tested-by: Hsin-Yi Wang <hsinyi@chromium.org> Tested-by: Mark-PK Tsai <mark-pk.tsai@mediatek.com> Signed-off-by: Johan Hovold <johan+linaro@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20230213104302.17307-3-johan+linaro@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
11790a4faf |
irqdomain: Fix association race
commit b06730a571a9ff1ba5bd6b20bf9e50e5a12f1ec6 upstream. The sanity check for an already mapped virq is done outside of the irq_domain_mutex-protected section which means that an (unlikely) racing association may not be detected. Fix this by factoring out the association implementation, which will also be used in a follow-on change to fix a shared-interrupt mapping race. Fixes: ddaf144c61da ("irqdomain: Refactor irq_domain_associate_many()") Cc: stable@vger.kernel.org # 3.11 Tested-by: Hsin-Yi Wang <hsinyi@chromium.org> Tested-by: Mark-PK Tsai <mark-pk.tsai@mediatek.com> Signed-off-by: Johan Hovold <johan+linaro@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20230213104302.17307-2-johan+linaro@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
9cd88c1765 |
x86/kprobes: Fix arch_check_optimized_kprobe check within optimized_kprobe range
commit f1c97a1b4ef709e3f066f82e3ba3108c3b133ae6 upstream. When arch_prepare_optimized_kprobe calculating jump destination address, it copies original instructions from jmp-optimized kprobe (see __recover_optprobed_insn), and calculated based on length of original instruction. arch_check_optimized_kprobe does not check KPROBE_FLAG_OPTIMATED when checking whether jmp-optimized kprobe exists. As a result, setup_detour_execution may jump to a range that has been overwritten by jump destination address, resulting in an inval opcode error. For example, assume that register two kprobes whose addresses are <func+9> and <func+11> in "func" function. The original code of "func" function is as follows: 0xffffffff816cb5e9 <+9>: push %r12 0xffffffff816cb5eb <+11>: xor %r12d,%r12d 0xffffffff816cb5ee <+14>: test %rdi,%rdi 0xffffffff816cb5f1 <+17>: setne %r12b 0xffffffff816cb5f5 <+21>: push %rbp 1.Register the kprobe for <func+11>, assume that is kp1, corresponding optimized_kprobe is op1. After the optimization, "func" code changes to: 0xffffffff816cc079 <+9>: push %r12 0xffffffff816cc07b <+11>: jmp 0xffffffffa0210000 0xffffffff816cc080 <+16>: incl 0xf(%rcx) 0xffffffff816cc083 <+19>: xchg %eax,%ebp 0xffffffff816cc084 <+20>: (bad) 0xffffffff816cc085 <+21>: push %rbp Now op1->flags == KPROBE_FLAG_OPTIMATED; 2. Register the kprobe for <func+9>, assume that is kp2, corresponding optimized_kprobe is op2. register_kprobe(kp2) register_aggr_kprobe alloc_aggr_kprobe __prepare_optimized_kprobe arch_prepare_optimized_kprobe __recover_optprobed_insn // copy original bytes from kp1->optinsn.copied_insn, // jump address = <func+14> 3. disable kp1: disable_kprobe(kp1) __disable_kprobe ... if (p == orig_p || aggr_kprobe_disabled(orig_p)) { ret = disarm_kprobe(orig_p, true) // add op1 in unoptimizing_list, not unoptimized orig_p->flags |= KPROBE_FLAG_DISABLED; // op1->flags == KPROBE_FLAG_OPTIMATED | KPROBE_FLAG_DISABLED ... 4. unregister kp2 __unregister_kprobe_top ... if (!kprobe_disabled(ap) && !kprobes_all_disarmed) { optimize_kprobe(op) ... if (arch_check_optimized_kprobe(op) < 0) // because op1 has KPROBE_FLAG_DISABLED, here not return return; p->kp.flags |= KPROBE_FLAG_OPTIMIZED; // now op2 has KPROBE_FLAG_OPTIMIZED } "func" code now is: 0xffffffff816cc079 <+9>: int3 0xffffffff816cc07a <+10>: push %rsp 0xffffffff816cc07b <+11>: jmp 0xffffffffa0210000 0xffffffff816cc080 <+16>: incl 0xf(%rcx) 0xffffffff816cc083 <+19>: xchg %eax,%ebp 0xffffffff816cc084 <+20>: (bad) 0xffffffff816cc085 <+21>: push %rbp 5. if call "func", int3 handler call setup_detour_execution: if (p->flags & KPROBE_FLAG_OPTIMIZED) { ... regs->ip = (unsigned long)op->optinsn.insn + TMPL_END_IDX; ... } The code for the destination address is 0xffffffffa021072c: push %r12 0xffffffffa021072e: xor %r12d,%r12d 0xffffffffa0210731: jmp 0xffffffff816cb5ee <func+14> However, <func+14> is not a valid start instruction address. As a result, an error occurs. Link: https://lore.kernel.org/all/20230216034247.32348-3-yangjihong1@huawei.com/ Fixes: f66c0447cca1 ("kprobes: Set unoptimized flag after unoptimizing code") Signed-off-by: Yang Jihong <yangjihong1@huawei.com> Cc: stable@vger.kernel.org Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
31f7904bef |
x86/kprobes: Fix __recover_optprobed_insn check optimizing logic
commit 868a6fc0ca2407622d2833adefe1c4d284766c4c upstream. Since the following commit: commit f66c0447cca1 ("kprobes: Set unoptimized flag after unoptimizing code") modified the update timing of the KPROBE_FLAG_OPTIMIZED, a optimized_kprobe may be in the optimizing or unoptimizing state when op.kp->flags has KPROBE_FLAG_OPTIMIZED and op->list is not empty. The __recover_optprobed_insn check logic is incorrect, a kprobe in the unoptimizing state may be incorrectly determined as unoptimizing. As a result, incorrect instructions are copied. The optprobe_queued_unopt function needs to be exported for invoking in arch directory. Link: https://lore.kernel.org/all/20230216034247.32348-2-yangjihong1@huawei.com/ Fixes: f66c0447cca1 ("kprobes: Set unoptimized flag after unoptimizing code") Cc: stable@vger.kernel.org Signed-off-by: Yang Jihong <yangjihong1@huawei.com> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
59de7af9d6 |
timers: Prevent union confusion from unexpected restart_syscall()
[ Upstream commit 9f76d59173d9d146e96c66886b671c1915a5c5e5 ] The nanosleep syscalls use the restart_block mechanism, with a quirk: The `type` and `rmtp`/`compat_rmtp` fields are set up unconditionally on syscall entry, while the rest of the restart_block is only set up in the unlikely case that the syscall is actually interrupted by a signal (or pseudo-signal) that doesn't have a signal handler. If the restart_block was set up by a previous syscall (futex(..., FUTEX_WAIT, ...) or poll()) and hasn't been invalidated somehow since then, this will clobber some of the union fields used by futex_wait_restart() and do_restart_poll(). If userspace afterwards wrongly calls the restart_syscall syscall, futex_wait_restart()/do_restart_poll() will read struct fields that have been clobbered. This doesn't actually lead to anything particularly interesting because none of the union fields contain trusted kernel data, and futex(..., FUTEX_WAIT, ...) and poll() aren't syscalls where it makes much sense to apply seccomp filters to their arguments. So the current consequences are just of the "if userspace does bad stuff, it can damage itself, and that's not a problem" flavor. But still, it seems like a hazard for future developers, so invalidate the restart_block when partly setting it up in the nanosleep syscalls. Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20230105134403.754986-1-jannh@google.com Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
|
dc5e333dcf |
rcu: Suppress smp_processor_id() complaint in synchronize_rcu_expedited_wait()
[ Upstream commit 2d7f00b2f01301d6e41fd4a28030dab0442265be ] The normal grace period's RCU CPU stall warnings are invoked from the scheduling-clock interrupt handler, and can thus invoke smp_processor_id() with impunity, which allows them to directly invoke dump_cpu_task(). In contrast, the expedited grace period's RCU CPU stall warnings are invoked from process context, which causes the dump_cpu_task() function's calls to smp_processor_id() to complain bitterly in debug kernels. This commit therefore causes synchronize_rcu_expedited_wait() to disable preemption around its call to dump_cpu_task(). Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
|
fdefa3f586 |
bpf: Fix truncation handling for mod32 dst reg wrt zero
Commit 9b00f1b78809309163dda2d044d9e94a3c0248a3 upstream. Recently noticed that when mod32 with a known src reg of 0 is performed, then the dst register is 32-bit truncated in verifier: 0: R1=ctx(id=0,off=0,imm=0) R10=fp0 0: (b7) r0 = 0 1: R0_w=inv0 R1=ctx(id=0,off=0,imm=0) R10=fp0 1: (b7) r1 = -1 2: R0_w=inv0 R1_w=inv-1 R10=fp0 2: (b4) w2 = -1 3: R0_w=inv0 R1_w=inv-1 R2_w=inv4294967295 R10=fp0 3: (9c) w1 %= w0 4: R0_w=inv0 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0 4: (b7) r0 = 1 5: R0_w=inv1 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0 5: (1d) if r1 == r2 goto pc+1 R0_w=inv1 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0 6: R0_w=inv1 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0 6: (b7) r0 = 2 7: R0_w=inv2 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0 7: (95) exit 7: R0=inv1 R1=inv(id=0,umin_value=4294967295,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2=inv4294967295 R10=fp0 7: (95) exit However, as a runtime result, we get 2 instead of 1, meaning the dst register does not contain (u32)-1 in this case. The reason is fairly straight forward given the 0 test leaves the dst register as-is: # ./bpftool p d x i 23 0: (b7) r0 = 0 1: (b7) r1 = -1 2: (b4) w2 = -1 3: (16) if w0 == 0x0 goto pc+1 4: (9c) w1 %= w0 5: (b7) r0 = 1 6: (1d) if r1 == r2 goto pc+1 7: (b7) r0 = 2 8: (95) exit This was originally not an issue given the dst register was marked as completely unknown (aka 64 bit unknown). However, after 468f6eafa6c4 ("bpf: fix 32-bit ALU op verification") the verifier casts the register output to 32 bit, and hence it becomes 32 bit unknown. Note that for the case where the src register is unknown, the dst register is marked 64 bit unknown. After the fix, the register is truncated by the runtime and the test passes: # ./bpftool p d x i 23 0: (b7) r0 = 0 1: (b7) r1 = -1 2: (b4) w2 = -1 3: (16) if w0 == 0x0 goto pc+2 4: (9c) w1 %= w0 5: (05) goto pc+1 6: (bc) w1 = w1 7: (b7) r0 = 1 8: (1d) if r1 == r2 goto pc+1 9: (b7) r0 = 2 10: (95) exit Semantics also match with {R,W}x mod{64,32} 0 -> {R,W}x. Invalid div has always been {R,W}x div{64,32} 0 -> 0. Rewrites are as follows: mod32: mod64: (16) if w0 == 0x0 goto pc+2 (15) if r0 == 0x0 goto pc+1 (9c) w1 %= w0 (9f) r1 %= r0 (05) goto pc+1 (bc) w1 = w1 [Salvatore Bonaccorso: This is an earlier version based on work by Daniel and John which does not rely on availability of the BPF_JMP32 instruction class. This means it is not even strictly a backport of the upstream commit mentioned but based on Daniel's and John's work to address the issue and was finalized by Thadeu Lima de Souza Cascardo.] Fixes: 468f6eafa6c4 ("bpf: fix 32-bit ALU op verification") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Tested-by: Salvatore Bonaccorso <carnil@debian.org> Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Edward Liaw <edliaw@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
d5cf15857c |
bpf: Fix 32 bit src register truncation on div/mod
Commit e88b2c6e5a4d9ce30d75391e4d950da74bb2bd90 upstream. While reviewing a different fix, John and I noticed an oddity in one of the BPF program dumps that stood out, for example: # bpftool p d x i 13 0: (b7) r0 = 808464450 1: (b4) w4 = 808464432 2: (bc) w0 = w0 3: (15) if r0 == 0x0 goto pc+1 4: (9c) w4 %= w0 [...] In line 2 we noticed that the mov32 would 32 bit truncate the original src register for the div/mod operation. While for the two operations the dst register is typically marked unknown e.g. from adjust_scalar_min_max_vals() the src register is not, and thus verifier keeps tracking original bounds, simplified: 0: R1=ctx(id=0,off=0,imm=0) R10=fp0 0: (b7) r0 = -1 1: R0_w=invP-1 R1=ctx(id=0,off=0,imm=0) R10=fp0 1: (b7) r1 = -1 2: R0_w=invP-1 R1_w=invP-1 R10=fp0 2: (3c) w0 /= w1 3: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R1_w=invP-1 R10=fp0 3: (77) r1 >>= 32 4: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R1_w=invP4294967295 R10=fp0 4: (bf) r0 = r1 5: R0_w=invP4294967295 R1_w=invP4294967295 R10=fp0 5: (95) exit processed 6 insns (limit 1000000) max_states_per_insn 0 total_states 0 peak_states 0 mark_read 0 Runtime result of r0 at exit is 0 instead of expected -1. Remove the verifier mov32 src rewrite in div/mod and replace it with a jmp32 test instead. After the fix, we result in the following code generation when having dividend r1 and divisor r6: div, 64 bit: div, 32 bit: 0: (b7) r6 = 8 0: (b7) r6 = 8 1: (b7) r1 = 8 1: (b7) r1 = 8 2: (55) if r6 != 0x0 goto pc+2 2: (56) if w6 != 0x0 goto pc+2 3: (ac) w1 ^= w1 3: (ac) w1 ^= w1 4: (05) goto pc+1 4: (05) goto pc+1 5: (3f) r1 /= r6 5: (3c) w1 /= w6 6: (b7) r0 = 0 6: (b7) r0 = 0 7: (95) exit 7: (95) exit mod, 64 bit: mod, 32 bit: 0: (b7) r6 = 8 0: (b7) r6 = 8 1: (b7) r1 = 8 1: (b7) r1 = 8 2: (15) if r6 == 0x0 goto pc+1 2: (16) if w6 == 0x0 goto pc+1 3: (9f) r1 %= r6 3: (9c) w1 %= w6 4: (b7) r0 = 0 4: (b7) r0 = 0 5: (95) exit 5: (95) exit x86 in particular can throw a 'divide error' exception for div instruction not only for divisor being zero, but also for the case when the quotient is too large for the designated register. For the edx:eax and rdx:rax dividend pair it is not an issue in x86 BPF JIT since we always zero edx (rdx). Hence really the only protection needed is against divisor being zero. [Salvatore Bonaccorso: This is an earlier version of the patch provided by Daniel Borkmann which does not rely on availability of the BPF_JMP32 instruction class. This means it is not even strictly a backport of the upstream commit mentioned but based on Daniel's and John's work to address the issue.] Fixes: 68fda450a7df ("bpf: fix 32-bit divide by zero") Co-developed-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: Salvatore Bonaccorso <carnil@debian.org> Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Edward Liaw <edliaw@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
b000ce38ba |
bpf: fix subprog verifier bypass by div/mod by 0 exception
Commit f6b1b3bf0d5f681631a293cfe1ca934b81716f1e upstream. One of the ugly leftovers from the early eBPF days is that div/mod operations based on registers have a hard-coded src_reg == 0 test in the interpreter as well as in JIT code generators that would return from the BPF program with exit code 0. This was basically adopted from cBPF interpreter for historical reasons. There are multiple reasons why this is very suboptimal and prone to bugs. To name one: the return code mapping for such abnormal program exit of 0 does not always match with a suitable program type's exit code mapping. For example, '0' in tc means action 'ok' where the packet gets passed further up the stack, which is just undesirable for such cases (e.g. when implementing policy) and also does not match with other program types. While trying to work out an exception handling scheme, I also noticed that programs crafted like the following will currently pass the verifier: 0: (bf) r6 = r1 1: (85) call pc+8 caller: R6=ctx(id=0,off=0,imm=0) R10=fp0,call_-1 callee: frame1: R1=ctx(id=0,off=0,imm=0) R10=fp0,call_1 10: (b4) (u32) r2 = (u32) 0 11: (b4) (u32) r3 = (u32) 1 12: (3c) (u32) r3 /= (u32) r2 13: (61) r0 = *(u32 *)(r1 +76) 14: (95) exit returning from callee: frame1: R0_w=pkt(id=0,off=0,r=0,imm=0) R1=ctx(id=0,off=0,imm=0) R2_w=inv0 R3_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R10=fp0,call_1 to caller at 2: R0_w=pkt(id=0,off=0,r=0,imm=0) R6=ctx(id=0,off=0,imm=0) R10=fp0,call_-1 from 14 to 2: R0=pkt(id=0,off=0,r=0,imm=0) R6=ctx(id=0,off=0,imm=0) R10=fp0,call_-1 2: (bf) r1 = r6 3: (61) r1 = *(u32 *)(r1 +80) 4: (bf) r2 = r0 5: (07) r2 += 8 6: (2d) if r2 > r1 goto pc+1 R0=pkt(id=0,off=0,r=8,imm=0) R1=pkt_end(id=0,off=0,imm=0) R2=pkt(id=0,off=8,r=8,imm=0) R6=ctx(id=0,off=0,imm=0) R10=fp0,call_-1 7: (71) r0 = *(u8 *)(r0 +0) 8: (b7) r0 = 1 9: (95) exit from 6 to 8: safe processed 16 insns (limit 131072), stack depth 0+0 Basically what happens is that in the subprog we make use of a div/mod by 0 exception and in the 'normal' subprog's exit path we just return skb->data back to the main prog. This has the implication that the verifier thinks we always get a pkt pointer in R0 while we still have the implicit 'return 0' from the div as an alternative unconditional return path earlier. Thus, R0 then contains 0, meaning back in the parent prog we get the address range of [0x0, skb->data_end] as read and writeable. Similar can be crafted with other pointer register types. Since i) BPF_ABS/IND is not allowed in programs that contain BPF to BPF calls (and generally it's also disadvised to use in native eBPF context), ii) unknown opcodes don't return zero anymore, iii) we don't return an exception code in dead branches, the only last missing case affected and to fix is the div/mod handling. What we would really need is some infrastructure to propagate exceptions all the way to the original prog unwinding the current stack and returning that code to the caller of the BPF program. In user space such exception handling for similar runtimes is typically implemented with setjmp(3) and longjmp(3) as one possibility which is not available in the kernel, though (kgdb used to implement it in kernel long time ago). I implemented a PoC exception handling mechanism into the BPF interpreter with porting setjmp()/longjmp() into x86_64 and adding a new internal BPF_ABRT opcode that can use a program specific exception code for all exception cases we have (e.g. div/mod by 0, unknown opcodes, etc). While this seems to work in the constrained BPF environment (meaning, here, we don't need to deal with state e.g. from memory allocations that we would need to undo before going into exception state), it still has various drawbacks: i) we would need to implement the setjmp()/longjmp() for every arch supported in the kernel and for x86_64, arm64, sparc64 JITs currently supporting calls, ii) it has unconditional additional cost on main program entry to store CPU register state in initial setjmp() call, and we would need some way to pass the jmp_buf down into ___bpf_prog_run() for main prog and all subprogs, but also storing on stack is not really nice (other option would be per-cpu storage for this, but it also has the drawback that we need to disable preemption for every BPF program types). All in all this approach would add a lot of complexity. Another poor-man's solution would be to have some sort of additional shared register or scratch buffer to hold state for exceptions, and test that after every call return to chain returns and pass R0 all the way down to BPF prog caller. This is also problematic in various ways: i) an additional register doesn't map well into JITs, and some other scratch space could only be on per-cpu storage, which, again has the side-effect that this only works when we disable preemption, or somewhere in the input context which is not available everywhere either, and ii) this adds significant runtime overhead by putting conditionals after each and every call, as well as implementation complexity. Yet another option is to teach verifier that div/mod can return an integer, which however is also complex to implement as verifier would need to walk such fake 'mov r0,<code>; exit;' sequeuence and there would still be no guarantee for having propagation of this further down to the BPF caller as proper exception code. For parent prog, it is also is not distinguishable from a normal return of a constant scalar value. The approach taken here is a completely different one with little complexity and no additional overhead involved in that we make use of the fact that a div/mod by 0 is undefined behavior. Instead of bailing out, we adapt the same behavior as on some major archs like ARMv8 [0] into eBPF as well: X div 0 results in 0, and X mod 0 results in X. aarch64 and aarch32 ISA do not generate any traps or otherwise aborts of program execution for unsigned divides. I verified this also with a test program compiled by gcc and clang, and the behavior matches with the spec. Going forward we adapt the eBPF verifier to emit such rewrites once div/mod by register was seen. cBPF is not touched and will keep existing 'return 0' semantics. Given the options, it seems the most suitable from all of them, also since major archs have similar schemes in place. Given this is all in the realm of undefined behavior, we still have the option to adapt if deemed necessary and this way we would also have the option of more flexibility from LLVM code generation side (which is then fully visible to verifier). Thus, this patch i) fixes the panic seen in above program and ii) doesn't bypass the verifier observations. [0] ARM Architecture Reference Manual, ARMv8 [ARM DDI 0487B.b] http://infocenter.arm.com/help/topic/com.arm.doc.ddi0487b.b/DDI0487B_b_armv8_arm.pdf 1) aarch64 instruction set: section C3.4.7 and C6.2.279 (UDIV) "A division by zero results in a zero being written to the destination register, without any indication that the division by zero occurred." 2) aarch32 instruction set: section F1.4.8 and F5.1.263 (UDIV) "For the SDIV and UDIV instructions, division by zero always returns a zero result." Fixes: f4d7e40a5b71 ("bpf: introduce function calls (verification)") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Edward Liaw <edliaw@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
03b8fd056c |
bpf: Do not use ax register in interpreter on div/mod
Commit c348d806ed1d3075af52345344243824d72c4945 upstream. Partially undo old commit 144cd91c4c2b ("bpf: move tmp variable into ax register in interpreter"). The reason we need this here is because ax register will be used for holding temporary state for div/mod instruction which otherwise interpreter would corrupt. This will cause a small +8 byte stack increase for interpreter, but with the gain that we can use it from verifier rewrites as scratch register. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> [cascardo: This partial revert is needed in order to support using AX for the following two commits, as there is no JMP32 on 4.19.y] Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> [edliaw: Removed redeclaration of tmp introduced by patch differences between 4.14 and 4.19] Signed-off-by: Edward Liaw <edliaw@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
d21f4dae47 |
alarmtimer: Prevent starvation by small intervals and SIG_IGN
commit d125d1349abeb46945dc5e98f7824bf688266f13 upstream. syzbot reported a RCU stall which is caused by setting up an alarmtimer with a very small interval and ignoring the signal. The reproducer arms the alarm timer with a relative expiry of 8ns and an interval of 9ns. Not a problem per se, but that's an issue when the signal is ignored because then the timer is immediately rearmed because there is no way to delay that rearming to the signal delivery path. See posix_timer_fn() and commit 58229a189942 ("posix-timers: Prevent softirq starvation by small intervals and SIG_IGN") for details. The reproducer does not set SIG_IGN explicitely, but it sets up the timers signal with SIGCONT. That has the same effect as explicitely setting SIG_IGN for a signal as SIGCONT is ignored if there is no handler set and the task is not ptraced. The log clearly shows that: [pid 5102] --- SIGCONT {si_signo=SIGCONT, si_code=SI_TIMER, si_timerid=0, si_overrun=316014, si_int=0, si_ptr=NULL} --- It works because the tasks are traced and therefore the signal is queued so the tracer can see it, which delays the restart of the timer to the signal delivery path. But then the tracer is killed: [pid 5087] kill(-5102, SIGKILL <unfinished ...> ... ./strace-static-x86_64: Process 5107 detached and after it's gone the stall can be observed: syzkaller login: [ 79.439102][ C0] hrtimer: interrupt took 68471 ns [ 184.460538][ C1] rcu: INFO: rcu_preempt detected stalls on CPUs/tasks: ... [ 184.658237][ C1] rcu: Stack dump where RCU GP kthread last ran: [ 184.664574][ C1] Sending NMI from CPU 1 to CPUs 0: [ 184.669821][ C0] NMI backtrace for cpu 0 [ 184.669831][ C0] CPU: 0 PID: 5108 Comm: syz-executor192 Not tainted 6.2.0-rc6-next-20230203-syzkaller #0 ... [ 184.670036][ C0] Call Trace: [ 184.670041][ C0] <IRQ> [ 184.670045][ C0] alarmtimer_fired+0x327/0x670 posix_timer_fn() prevents that by checking whether the interval for timers which have the signal ignored is smaller than a jiffie and artifically delay it by shifting the next expiry out by a jiffie. That's accurate vs. the overrun accounting, but slightly inaccurate vs. timer_gettimer(2). The comment in that function says what needs to be done and there was a fix available for the regular userspace induced SIG_IGN mechanism, but that did not work due to the implicit ignore for SIGCONT and similar signals. This needs to be worked on, but for now the only available workaround is to do exactly what posix_timer_fn() does: Increase the interval of self-rearming timers, which have their signal ignored, to at least a jiffie. Interestingly this has been fixed before via commit ff86bf0c65f1 ("alarmtimer: Rate limit periodic intervals") already, but that fix got lost in a later rework. Reported-by: syzbot+b9564ba6e8e00694511b@syzkaller.appspotmail.com Fixes: f2c45807d399 ("alarmtimer: Switch over to generic set/get/rearm routine") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: John Stultz <jstultz@google.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/87k00q1no2.ffs@tglx Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
4ba2f65e6f |
exit: Use READ_ONCE() for all oops/warn limit reads
commit 7535b832c6399b5ebfc5b53af5c51dd915ee2538 upstream. Use a temporary variable to take full advantage of READ_ONCE() behavior. Without this, the report (and even the test) might be out of sync with the initial test. Reported-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/lkml/Y5x7GXeluFmZ8E0E@hirez.programming.kicks-ass.net Fixes: 9fc9e278a5c0 ("panic: Introduce warn_limit") Fixes: d4ccd54d28d3 ("exit: Put an upper limit on how often we can oops") Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Jann Horn <jannh@google.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Petr Mladek <pmladek@suse.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Marco Elver <elver@google.com> Cc: tangmeng <tangmeng@uniontech.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Tiezhu Yang <yangtiezhu@loongson.cn> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
11bece1415 |
panic: Expose "warn_count" to sysfs
commit 8b05aa26336113c4cea25f1c333ee8cd4fc212a6 upstream. Since Warn count is now tracked and is a fairly interesting signal, add the entry /sys/kernel/warn_count to expose it to userspace. Cc: Petr Mladek <pmladek@suse.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: tangmeng <tangmeng@uniontech.com> Cc: "Guilherme G. Piccoli" <gpiccoli@igalia.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Tiezhu Yang <yangtiezhu@loongson.cn> Reviewed-by: Luis Chamberlain <mcgrof@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20221117234328.594699-6-keescook@chromium.org Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
f86706f458 |
panic: Introduce warn_limit
commit 9fc9e278a5c0b708eeffaf47d6eb0c82aa74ed78 upstream. Like oops_limit, add warn_limit for limiting the number of warnings when panic_on_warn is not set. Cc: Jonathan Corbet <corbet@lwn.net> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: "Jason A. Donenfeld" <Jason@zx2c4.com> Cc: Eric Biggers <ebiggers@google.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Petr Mladek <pmladek@suse.com> Cc: tangmeng <tangmeng@uniontech.com> Cc: "Guilherme G. Piccoli" <gpiccoli@igalia.com> Cc: Tiezhu Yang <yangtiezhu@loongson.cn> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: linux-doc@vger.kernel.org Reviewed-by: Luis Chamberlain <mcgrof@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20221117234328.594699-5-keescook@chromium.org Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
a83bcc5fc4 |
panic: Consolidate open-coded panic_on_warn checks
commit 79cc1ba7badf9e7a12af99695a557e9ce27ee967 upstream. Several run-time checkers (KASAN, UBSAN, KFENCE, KCSAN, sched) roll their own warnings, and each check "panic_on_warn". Consolidate this into a single function so that future instrumentation can be added in a single location. Cc: Marco Elver <elver@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ben Segall <bsegall@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Daniel Bristot de Oliveira <bristot@redhat.com> Cc: Valentin Schneider <vschneid@redhat.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: David Gow <davidgow@google.com> Cc: tangmeng <tangmeng@uniontech.com> Cc: Jann Horn <jannh@google.com> Cc: Shuah Khan <skhan@linuxfoundation.org> Cc: Petr Mladek <pmladek@suse.com> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: "Guilherme G. Piccoli" <gpiccoli@igalia.com> Cc: Tiezhu Yang <yangtiezhu@loongson.cn> Cc: kasan-dev@googlegroups.com Cc: linux-mm@kvack.org Reviewed-by: Luis Chamberlain <mcgrof@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Reviewed-by: Marco Elver <elver@google.com> Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Link: https://lore.kernel.org/r/20221117234328.594699-4-keescook@chromium.org Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
2ba1ec1546 |
exit: Allow oops_limit to be disabled
commit de92f65719cd672f4b48397540b9f9eff67eca40 upstream. In preparation for keeping oops_limit logic in sync with warn_limit, have oops_limit == 0 disable checking the Oops counter. Cc: Jann Horn <jannh@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: "Jason A. Donenfeld" <Jason@zx2c4.com> Cc: Eric Biggers <ebiggers@google.com> Cc: Huang Ying <ying.huang@intel.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: linux-doc@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
784bf591ae |
exit: Expose "oops_count" to sysfs
commit 9db89b41117024f80b38b15954017fb293133364 upstream. Since Oops count is now tracked and is a fairly interesting signal, add the entry /sys/kernel/oops_count to expose it to userspace. Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Jann Horn <jannh@google.com> Cc: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Luis Chamberlain <mcgrof@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20221117234328.594699-3-keescook@chromium.org Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
53aca559a2 |
exit: Put an upper limit on how often we can oops
commit d4ccd54d28d3c8598e2354acc13e28c060961dbb upstream. Many Linux systems are configured to not panic on oops; but allowing an attacker to oops the system **really** often can make even bugs that look completely unexploitable exploitable (like NULL dereferences and such) if each crash elevates a refcount by one or a lock is taken in read mode, and this causes a counter to eventually overflow. The most interesting counters for this are 32 bits wide (like open-coded refcounts that don't use refcount_t). (The ldsem reader count on 32-bit platforms is just 16 bits, but probably nobody cares about 32-bit platforms that much nowadays.) So let's panic the system if the kernel is constantly oopsing. The speed of oopsing 2^32 times probably depends on several factors, like how long the stack trace is and which unwinder you're using; an empirically important one is whether your console is showing a graphical environment or a text console that oopses will be printed to. In a quick single-threaded benchmark, it looks like oopsing in a vfork() child with a very short stack trace only takes ~510 microseconds per run when a graphical console is active; but switching to a text console that oopses are printed to slows it down around 87x, to ~45 milliseconds per run. (Adding more threads makes this faster, but the actual oops printing happens under &die_lock on x86, so you can maybe speed this up by a factor of around 2 and then any further improvement gets eaten up by lock contention.) It looks like it would take around 8-12 days to overflow a 32-bit counter with repeated oopsing on a multi-core X86 system running a graphical environment; both me (in an X86 VM) and Seth (with a distro kernel on normal hardware in a standard configuration) got numbers in that ballpark. 12 days aren't *that* short on a desktop system, and you'd likely need much longer on a typical server system (assuming that people don't run graphical desktop environments on their servers), and this is a *very* noisy and violent approach to exploiting the kernel; and it also seems to take orders of magnitude longer on some machines, probably because stuff like EFI pstore will slow it down a ton if that's active. Signed-off-by: Jann Horn <jannh@google.com> Link: https://lore.kernel.org/r/20221107201317.324457-1-jannh@google.com Reviewed-by: Luis Chamberlain <mcgrof@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20221117234328.594699-2-keescook@chromium.org Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
5eded74b49 |
exit: Add and use make_task_dead.
commit 0e25498f8cd43c1b5aa327f373dd094e9a006da7 upstream. There are two big uses of do_exit. The first is it's design use to be the guts of the exit(2) system call. The second use is to terminate a task after something catastrophic has happened like a NULL pointer in kernel code. Add a function make_task_dead that is initialy exactly the same as do_exit to cover the cases where do_exit is called to handle catastrophic failure. In time this can probably be reduced to just a light wrapper around do_task_dead. For now keep it exactly the same so that there will be no behavioral differences introducing this new concept. Replace all of the uses of do_exit that use it for catastraphic task cleanup with make_task_dead to make it clear what the code is doing. As part of this rename rewind_stack_do_exit rewind_stack_and_make_dead. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
3bd9e479d3 |
panic: unset panic_on_warn inside panic()
commit 1a2383e8b84c0451fd9b1eec3b9aab16f30b597c upstream. In the current code, the following three places need to unset panic_on_warn before calling panic() to avoid recursive panics: kernel/kcsan/report.c: print_report() kernel/sched/core.c: __schedule_bug() mm/kfence/report.c: kfence_report_error() In order to avoid copy-pasting "panic_on_warn = 0" all over the places, it is better to move it inside panic() and then remove it from the other places. Link: https://lkml.kernel.org/r/1644324666-15947-4-git-send-email-yangtiezhu@loongson.cn Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn> Reviewed-by: Marco Elver <elver@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Baoquan He <bhe@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Xuefeng Li <lixuefeng@loongson.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
f97eb0ab06 |
tracing: Make sure trace_printk() can output as soon as it can be used
commit 3bb06eb6e9acf7c4a3e1b5bc87aed398ff8e2253 upstream. Currently trace_printk() can be used as soon as early_trace_init() is called from start_kernel(). But if a crash happens, and "ftrace_dump_on_oops" is set on the kernel command line, all you get will be: [ 0.456075] <idle>-0 0dN.2. 347519us : Unknown type 6 [ 0.456075] <idle>-0 0dN.2. 353141us : Unknown type 6 [ 0.456075] <idle>-0 0dN.2. 358684us : Unknown type 6 This is because the trace_printk() event (type 6) hasn't been registered yet. That gets done via an early_initcall(), which may be early, but not early enough. Instead of registering the trace_printk() event (and other ftrace events, which are not trace events) via an early_initcall(), have them registered at the same time that trace_printk() can be used. This way, if there is a crash before early_initcall(), then the trace_printk()s will actually be useful. Link: https://lkml.kernel.org/r/20230104161412.019f6c55@gandalf.local.home Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Fixes: e725c731e3bb1 ("tracing: Split tracing initialization into two for early initialization") Reported-by: "Joel Fernandes (Google)" <joel@joelfernandes.org> Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
e3c171ecda |
module: Don't wait for GOING modules
commit 0254127ab977e70798707a7a2b757c9f3c971210 upstream. During a system boot, it can happen that the kernel receives a burst of requests to insert the same module but loading it eventually fails during its init call. For instance, udev can make a request to insert a frequency module for each individual CPU when another frequency module is already loaded which causes the init function of the new module to return an error. Since commit 6e6de3dee51a ("kernel/module.c: Only return -EEXIST for modules that have finished loading"), the kernel waits for modules in MODULE_STATE_GOING state to finish unloading before making another attempt to load the same module. This creates unnecessary work in the described scenario and delays the boot. In the worst case, it can prevent udev from loading drivers for other devices and might cause timeouts of services waiting on them and subsequently a failed boot. This patch attempts a different solution for the problem 6e6de3dee51a was trying to solve. Rather than waiting for the unloading to complete, it returns a different error code (-EBUSY) for modules in the GOING state. This should avoid the error situation that was described in 6e6de3dee51a (user space attempting to load a dependent module because the -EEXIST error code would suggest to user space that the first module had been loaded successfully), while avoiding the delay situation too. This has been tested on linux-next since December 2022 and passes all kmod selftests except test 0009 with module compression enabled but it has been confirmed that this issue has existed and has gone unnoticed since prior to this commit and can also be reproduced without module compression with a simple usleep(5000000) on tools/modprobe.c [0]. These failures are caused by hitting the kernel mod_concurrent_max and can happen either due to a self inflicted kernel module auto-loead DoS somehow or on a system with large CPU count and each CPU count incorrectly triggering many module auto-loads. Both of those issues need to be fixed in-kernel. [0] https://lore.kernel.org/all/Y9A4fiobL6IHp%2F%2FP@bombadil.infradead.org/ Fixes: 6e6de3dee51a ("kernel/module.c: Only return -EEXIST for modules that have finished loading") Co-developed-by: Martin Wilck <mwilck@suse.com> Signed-off-by: Martin Wilck <mwilck@suse.com> Signed-off-by: Petr Pavlu <petr.pavlu@suse.com> Cc: stable@vger.kernel.org Reviewed-by: Petr Mladek <pmladek@suse.com> [mcgrof: enhance commit log with testing and kmod test result interpretation ] Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
291a0395bb |
prlimit: do_prlimit needs to have a speculation check
commit 739790605705ddcf18f21782b9c99ad7d53a8c11 upstream. do_prlimit() adds the user-controlled resource value to a pointer that will subsequently be dereferenced. In order to help prevent this codepath from being used as a spectre "gadget" a barrier needs to be added after checking the range. Reported-by: Jordy Zomer <jordyzomer@google.com> Tested-by: Jordy Zomer <jordyzomer@google.com> Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
6f3c9d66b4 |
tracing: Fix infinite loop in tracing_read_pipe on overflowed print_trace_line
commit c1ac03af6ed45d05786c219d102f37eb44880f28 upstream. print_trace_line may overflow seq_file buffer. If the event is not consumed, the while loop keeps peeking this event, causing a infinite loop. Link: https://lkml.kernel.org/r/20221129113009.182425-1-yangjihong1@huawei.com Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: stable@vger.kernel.org Fixes: 088b1e427dbba ("ftrace: pipe fixes") Signed-off-by: Yang Jihong <yangjihong1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
ed8d556f31 |
gcov: add support for checksum field
commit e96b95c2b7a63a454b6498e2df67aac14d046d13 upstream. In GCC version 12.1 a checksum field was added. This patch fixes a kernel crash occurring during boot when using gcov-kernel with GCC version 12.2. The crash occurred on a system running on i.MX6SX. Link: https://lkml.kernel.org/r/20221220102318.3418501-1-rickaran@axis.com Fixes: 977ef30a7d88 ("gcov: support GCC 12.1 and newer compilers") Signed-off-by: Rickard x Andersson <rickaran@axis.com> Reviewed-by: Peter Oberparleiter <oberpar@linux.ibm.com> Tested-by: Peter Oberparleiter <oberpar@linux.ibm.com> Reviewed-by: Martin Liska <mliska@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
cf60bbca1b |
acct: fix potential integer overflow in encode_comp_t()
[ Upstream commit c5f31c655bcc01b6da53b836ac951c1556245305 ] The integer overflow is descripted with following codes: > 317 static comp_t encode_comp_t(u64 value) > 318 { > 319 int exp, rnd; ...... > 341 exp <<= MANTSIZE; > 342 exp += value; > 343 return exp; > 344 } Currently comp_t is defined as type of '__u16', but the variable 'exp' is type of 'int', so overflow would happen when variable 'exp' in line 343 is greater than 65535. Link: https://lkml.kernel.org/r/20210515140631.369106-3-zhengyejian1@huawei.com Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zhang Jinhao <zhangjinhao2@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
|
82f2a5b6aa |
blktrace: Fix output non-blktrace event when blk_classic option enabled
[ Upstream commit f596da3efaf4130ff61cd029558845808df9bf99 ] When the blk_classic option is enabled, non-blktrace events must be filtered out. Otherwise, events of other types are output in the blktrace classic format, which is unexpected. The problem can be triggered in the following ways: # echo 1 > /sys/kernel/debug/tracing/options/blk_classic # echo 1 > /sys/kernel/debug/tracing/events/enable # echo blk > /sys/kernel/debug/tracing/current_tracer # cat /sys/kernel/debug/tracing/trace_pipe Fixes: c71a89615411 ("blktrace: add ftrace plugin") Signed-off-by: Yang Jihong <yangjihong1@huawei.com> Link: https://lore.kernel.org/r/20221122040410.85113-1-yangjihong1@huawei.com Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
|
6681f6e3a6 |
perf: Fix possible memleak in pmu_dev_alloc()
[ Upstream commit e8d7a90c08ce963c592fb49845f2ccc606a2ac21 ] In pmu_dev_alloc(), when dev_set_name() failed, it will goto free_dev and call put_device(pmu->dev) to release it. However pmu->dev->release is assigned after this, which makes warning and memleak. Call dev_set_name() after pmu->dev->release = pmu_dev_release to fix it. Device '(null)' does not have a release() function... WARNING: CPU: 2 PID: 441 at drivers/base/core.c:2332 device_release+0x1b9/0x240 ... Call Trace: <TASK> kobject_put+0x17f/0x460 put_device+0x20/0x30 pmu_dev_alloc+0x152/0x400 perf_pmu_register+0x96b/0xee0 ... kmemleak: 1 new suspected memory leaks (see /sys/kernel/debug/kmemleak) unreferenced object 0xffff888014759000 (size 2048): comm "modprobe", pid 441, jiffies 4294931444 (age 38.332s) backtrace: [<0000000005aed3b4>] kmalloc_trace+0x27/0x110 [<000000006b38f9b8>] pmu_dev_alloc+0x50/0x400 [<00000000735f17be>] perf_pmu_register+0x96b/0xee0 [<00000000e38477f1>] 0xffffffffc0ad8603 [<000000004e162216>] do_one_initcall+0xd0/0x4e0 ... Fixes: abe43400579d ("perf: Sysfs enumeration") Signed-off-by: Chen Zhongjin <chenzhongjin@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20221111103653.91058-1-chenzhongjin@huawei.com Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
|
6117eab955 |
PM: hibernate: Fix mistake in kerneldoc comment
[ Upstream commit 6e5d7300cbe7c3541bc31f16db3e9266e6027b4b ] The actual maximum image size formula in hibernate_preallocate_memory() is as follows: max_size = (count - (size + PAGES_FOR_IO)) / 2 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE); but the one in the kerneldoc comment of the function is different and incorrect. Fixes: ddeb64870810 ("PM / Hibernate: Add sysfs knob to control size of memory for drivers") Signed-off-by: xiongxin <xiongxin@kylinos.cn> [ rjw: Subject and changelog rewrite ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
|
b77600e26f |
memcg: fix possible use-after-free in memcg_write_event_control()
commit 4a7ba45b1a435e7097ca0f79a847d0949d0eb088 upstream. memcg_write_event_control() accesses the dentry->d_name of the specified control fd to route the write call. As a cgroup interface file can't be renamed, it's safe to access d_name as long as the specified file is a regular cgroup file. Also, as these cgroup interface files can't be removed before the directory, it's safe to access the parent too. Prior to 347c4a874710 ("memcg: remove cgroup_event->cft"), there was a call to __file_cft() which verified that the specified file is a regular cgroupfs file before further accesses. The cftype pointer returned from __file_cft() was no longer necessary and the commit inadvertently dropped the file type check with it allowing any file to slip through. With the invarients broken, the d_name and parent accesses can now race against renames and removals of arbitrary files and cause use-after-free's. Fix the bug by resurrecting the file type check in __file_cft(). Now that cgroupfs is implemented through kernfs, checking the file operations needs to go through a layer of indirection. Instead, let's check the superblock and dentry type. Link: https://lkml.kernel.org/r/Y5FRm/cfcKPGzWwl@slm.duckdns.org Fixes: 347c4a874710 ("memcg: remove cgroup_event->cft") Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jann Horn <jannh@google.com> Acked-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: <stable@vger.kernel.org> [3.14+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
dad6ca557f |
proc: proc_skip_spaces() shouldn't think it is working on C strings
commit bce9332220bd677d83b19d21502776ad555a0e73 upstream. proc_skip_spaces() seems to think it is working on C strings, and ends up being just a wrapper around skip_spaces() with a really odd calling convention. Instead of basing it on skip_spaces(), it should have looked more like proc_skip_char(), which really is the exact same function (except it skips a particular character, rather than whitespace). So use that as inspiration, odd coding and all. Now the calling convention actually makes sense and works for the intended purpose. Reported-and-tested-by: Kyle Zeng <zengyhkyle@gmail.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
4f4ff21bbc |
proc: avoid integer type confusion in get_proc_long
commit e6cfaf34be9fcd1a8285a294e18986bfc41a409c upstream. proc_get_long() is passed a size_t, but then assigns it to an 'int' variable for the length. Let's not do that, even if our IO paths are limited to MAX_RW_COUNT (exactly because of these kinds of type errors). So do the proper test in the rigth type. Reported-by: Kyle Zeng <zengyhkyle@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
86a4ce251f |
perf: Add sample_flags to indicate the PMU-filled sample data
[ Upstream commit 3aac580d5cc3001ca1627725b3b61edb529f341d ] On some platforms, some data e.g., timestamps, can be retrieved from the PMU driver. Usually, the data from the PMU driver is more accurate. The current perf kernel should output the PMU-filled sample data if it's available. To check the availability of the PMU-filled sample data, the current perf kernel initializes the related fields in the perf_sample_data_init(). When outputting a sample, the perf checks whether the field is updated by the PMU driver. If yes, the updated value will be output. If not, the perf uses an SW way to calculate the value or just outputs the initialized value if an SW way is unavailable either. With more and more data being provided by the PMU driver, more fields has to be initialized in the perf_sample_data_init(). That will increase the number of cache lines touched in perf_sample_data_init() and be harmful to the performance. Add new "sample_flags" to indicate the PMU-filled sample data. The PMU driver should set the corresponding PERF_SAMPLE_ flag when the field is updated. The initialization of the corresponding field is not required anymore. The following patches will make use of it and remove the corresponding fields from the perf_sample_data_init(), which will further minimize the number of cache lines touched. Only clear the sample flags that have already been done by the PMU driver in the perf_prepare_sample() for the PERF_RECORD_SAMPLE. For the other PERF_RECORD_ event type, the sample data is not available. Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220901130959.1285717-2-kan.liang@linux.intel.com Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
|
4c9338db7d |
ring_buffer: Do not deactivate non-existant pages
commit 56f4ca0a79a9f1af98f26c54b9b89ba1f9bcc6bd upstream. rb_head_page_deactivate() expects cpu_buffer to contain a valid list of ->pages, so verify that the list is actually present before calling it. Found by Linux Verification Center (linuxtesting.org) with the SVACE static analysis tool. Link: https://lkml.kernel.org/r/20221114143129.3534443-1-d-tatianin@yandex-team.ru Cc: stable@vger.kernel.org Fixes: 77ae365eca895 ("ring-buffer: make lockless") Signed-off-by: Daniil Tatianin <d-tatianin@yandex-team.ru> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
665b4c6648 |
ftrace: Fix null pointer dereference in ftrace_add_mod()
commit 19ba6c8af9382c4c05dc6a0a79af3013b9a35cd0 upstream. The @ftrace_mod is allocated by kzalloc(), so both the members {prev,next} of @ftrace_mode->list are NULL, it's not a valid state to call list_del(). If kstrdup() for @ftrace_mod->{func|module} fails, it goes to @out_free tag and calls free_ftrace_mod() to destroy @ftrace_mod, then list_del() will write prev->next and next->prev, where null pointer dereference happens. BUG: kernel NULL pointer dereference, address: 0000000000000008 Oops: 0002 [#1] PREEMPT SMP NOPTI Call Trace: <TASK> ftrace_mod_callback+0x20d/0x220 ? do_filp_open+0xd9/0x140 ftrace_process_regex.isra.51+0xbf/0x130 ftrace_regex_write.isra.52.part.53+0x6e/0x90 vfs_write+0xee/0x3a0 ? __audit_filter_op+0xb1/0x100 ? auditd_test_task+0x38/0x50 ksys_write+0xa5/0xe0 do_syscall_64+0x3a/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd Kernel panic - not syncing: Fatal exception So call INIT_LIST_HEAD() to initialize the list member to fix this issue. Link: https://lkml.kernel.org/r/20221116015207.30858-1-xiujianfeng@huawei.com Cc: stable@vger.kernel.org Fixes: 673feb9d76ab ("ftrace: Add :mod: caching infrastructure to trace_array") Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
7eb7b34275 |
ftrace: Optimize the allocation for mcount entries
commit bcea02b096333dc74af987cb9685a4dbdd820840 upstream. If we can't allocate this size, try something smaller with half of the size. Its order should be decreased by one instead of divided by two. Link: https://lkml.kernel.org/r/20221109094434.84046-3-wangwensheng4@huawei.com Cc: <mhiramat@kernel.org> Cc: <mark.rutland@arm.com> Cc: stable@vger.kernel.org Fixes: a79008755497d ("ftrace: Allocate the mcount record pages as groups") Signed-off-by: Wang Wensheng <wangwensheng4@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
c07fd1115d |
ftrace: Fix the possible incorrect kernel message
commit 08948caebe93482db1adfd2154eba124f66d161d upstream. If the number of mcount entries is an integer multiple of ENTRIES_PER_PAGE, the page count showing on the console would be wrong. Link: https://lkml.kernel.org/r/20221109094434.84046-2-wangwensheng4@huawei.com Cc: <mhiramat@kernel.org> Cc: <mark.rutland@arm.com> Cc: stable@vger.kernel.org Fixes: 5821e1b74f0d0 ("function tracing: fix wrong pos computing when read buffer has been fulfilled") Signed-off-by: Wang Wensheng <wangwensheng4@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
7952605f20 |
PM: hibernate: Allow hybrid sleep to work with s2idle
[ Upstream commit 85850af4fc47132f3f2f0dd698b90f67906600b4 ] Hybrid sleep is currently hardcoded to only operate with S3 even on systems that might not support it. Instead of assuming this mode is what the user wants to use, for hybrid sleep follow the setting of `mem_sleep_current` which will respect mem_sleep_default kernel command line and policy decisions made by the presence of the FADT low power idle bit. Fixes: 81d45bdf8913 ("PM / hibernate: Untangle power_down()") Reported-and-tested-by: kolAflash <kolAflash@kolahilft.de> Link: https://bugzilla.kernel.org/show_bug.cgi?id=216574 Signed-off-by: Mario Limonciello <mario.limonciello@amd.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
|
e0b0304702 |
gcov: support GCC 12.1 and newer compilers
commit 977ef30a7d888eeb52fb6908f99080f33e5309a8 upstream. Starting with GCC 12.1, the created .gcda format can't be read by gcov tool. There are 2 significant changes to the .gcda file format that need to be supported: a) [gcov: Use system IO buffering] (23eb66d1d46a34cb28c4acbdf8a1deb80a7c5a05) changed that all sizes in the format are in bytes and not in words (4B) b) [gcov: make profile merging smarter] (72e0c742bd01f8e7e6dcca64042b9ad7e75979de) add a new checksum to the file header. Tested with GCC 7.5, 10.4, 12.2 and the current master. Link: https://lkml.kernel.org/r/624bda92-f307-30e9-9aaa-8cc678b2dfb2@suse.cz Signed-off-by: Martin Liska <mliska@suse.cz> Tested-by: Peter Oberparleiter <oberpar@linux.ibm.com> Reviewed-by: Peter Oberparleiter <oberpar@linux.ibm.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
2b261933e2 |
ring-buffer: Fix race between reset page and reading page
commit a0fcaaed0c46cf9399d3a2d6e0c87ddb3df0e044 upstream. The ring buffer is broken up into sub buffers (currently of page size). Each sub buffer has a pointer to its "tail" (the last event written to the sub buffer). When a new event is requested, the tail is locally incremented to cover the size of the new event. This is done in a way that there is no need for locking. If the tail goes past the end of the sub buffer, the process of moving to the next sub buffer takes place. After setting the current sub buffer to the next one, the previous one that had the tail go passed the end of the sub buffer needs to be reset back to the original tail location (before the new event was requested) and the rest of the sub buffer needs to be "padded". The race happens when a reader takes control of the sub buffer. As readers do a "swap" of sub buffers from the ring buffer to get exclusive access to the sub buffer, it replaces the "head" sub buffer with an empty sub buffer that goes back into the writable portion of the ring buffer. This swap can happen as soon as the writer moves to the next sub buffer and before it updates the last sub buffer with padding. Because the sub buffer can be released to the reader while the writer is still updating the padding, it is possible for the reader to see the event that goes past the end of the sub buffer. This can cause obvious issues. To fix this, add a few memory barriers so that the reader definitely sees the updates to the sub buffer, and also waits until the writer has put back the "tail" of the sub buffer back to the last event that was written on it. To be paranoid, it will only spin for 1 second, otherwise it will warn and shutdown the ring buffer code. 1 second should be enough as the writer does have preemption disabled. If the writer doesn't move within 1 second (with preemption disabled) something is horribly wrong. No interrupt should last 1 second! Link: https://lore.kernel.org/all/20220830120854.7545-1-jiazi.li@transsion.com/ Link: https://bugzilla.kernel.org/show_bug.cgi?id=216369 Link: https://lkml.kernel.org/r/20220929104909.0650a36c@gandalf.local.home Cc: Ingo Molnar <mingo@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: stable@vger.kernel.org Fixes: c7b0930857e22 ("ring-buffer: prevent adding write in discarded area") Reported-by: Jiazi.Li <jiazi.li@transsion.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
7240e7d0c2 |
ring-buffer: Check pending waiters when doing wake ups as well
commit ec0bbc5ec5664dcee344f79373852117dc672c86 upstream. The wake up waiters only checks the "wakeup_full" variable and not the "full_waiters_pending". The full_waiters_pending is set when a waiter is added to the wait queue. The wakeup_full is only set when an event is triggered, and it clears the full_waiters_pending to avoid multiple calls to irq_work_queue(). The irq_work callback really needs to check both wakeup_full as well as full_waiters_pending such that this code can be used to wake up waiters when a file is closed that represents the ring buffer and the waiters need to be woken up. Link: https://lkml.kernel.org/r/20220927231824.209460321@goodmis.org Cc: stable@vger.kernel.org Cc: Ingo Molnar <mingo@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Fixes: 15693458c4bc0 ("tracing/ring-buffer: Move poll wake ups into ring buffer code") Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
5623aad6cd |
ring-buffer: Allow splice to read previous partially read pages
commit fa8f4a89736b654125fb254b0db753ac68a5fced upstream. If a page is partially read, and then the splice system call is run against the ring buffer, it will always fail to read, no matter how much is in the ring buffer. That's because the code path for a partial read of the page does will fail if the "full" flag is set. The splice system call wants full pages, so if the read of the ring buffer is not yet full, it should return zero, and the splice will block. But if a previous read was done, where the beginning has been consumed, it should still be given to the splice caller if the rest of the page has been written to. This caused the splice command to never consume data in this scenario, and let the ring buffer just fill up and lose events. Link: https://lkml.kernel.org/r/20220927144317.46be6b80@gandalf.local.home Cc: stable@vger.kernel.org Fixes: 8789a9e7df6bf ("ring-buffer: read page interface") Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
caeaffa62d |
ftrace: Properly unset FTRACE_HASH_FL_MOD
commit 0ce0638edf5ec83343302b884fa208179580700a upstream. When executing following commands like what document said, but the log "#### all functions enabled ####" was not shown as expect: 1. Set a 'mod' filter: $ echo 'write*:mod:ext3' > /sys/kernel/tracing/set_ftrace_filter 2. Invert above filter: $ echo '!write*:mod:ext3' >> /sys/kernel/tracing/set_ftrace_filter 3. Read the file: $ cat /sys/kernel/tracing/set_ftrace_filter By some debugging, I found that flag FTRACE_HASH_FL_MOD was not unset after inversion like above step 2 and then result of ftrace_hash_empty() is incorrect. Link: https://lkml.kernel.org/r/20220926152008.2239274-1-zhengyejian1@huawei.com Cc: <mingo@redhat.com> Cc: stable@vger.kernel.org Fixes: 8c08f0d5c6fb ("ftrace: Have cached module filters be an active filter") Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
c94203f462 |
livepatch: fix race between fork and KLP transition
commit 747f7a2901174c9afa805dddfb7b24db6f65e985 upstream. The KLP transition code depends on the TIF_PATCH_PENDING and the task->patch_state to stay in sync. On a normal (forward) transition, TIF_PATCH_PENDING will be set on every task in the system, while on a reverse transition (after a failed forward one) first TIF_PATCH_PENDING will be cleared from every task, followed by it being set on tasks that need to be transitioned back to the original code. However, the fork code copies over the TIF_PATCH_PENDING flag from the parent to the child early on, in dup_task_struct and setup_thread_stack. Much later, klp_copy_process will set child->patch_state to match that of the parent. However, the parent's patch_state may have been changed by KLP loading or unloading since it was initially copied over into the child. This results in the KLP code occasionally hitting this warning in klp_complete_transition: for_each_process_thread(g, task) { WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING)); task->patch_state = KLP_UNDEFINED; } Set, or clear, the TIF_PATCH_PENDING flag in the child task depending on whether or not it is needed at the time klp_copy_process is called, at a point in copy_process where the tasklist_lock is held exclusively, preventing races with the KLP code. The KLP code does have a few places where the state is changed without the tasklist_lock held, but those should not cause problems because klp_update_patch_state(current) cannot be called while the current task is in the middle of fork, klp_check_and_switch_task() which is called under the pi_lock, which prevents rescheduling, and manipulation of the patch state of idle tasks, which do not fork. This should prevent this warning from triggering again in the future, and close the race for both normal and reverse transitions. Signed-off-by: Rik van Riel <riel@surriel.com> Reported-by: Breno Leitao <leitao@debian.org> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Fixes: d83a7cb375ee ("livepatch: change to a per-task consistency model") Cc: stable@kernel.org Signed-off-by: Petr Mladek <pmladek@suse.com> Link: https://lore.kernel.org/r/20220808150019.03d6a67b@imladris.surriel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
985abab0e7 |
kprobes: Prohibit probes in gate area
commit 1efda38d6f9ba26ac88b359c6277f1172db03f1e upstream. The system call gate area counts as kernel text but trying to install a kprobe in this area fails with an Oops later on. To fix this explicitly disallow the gate area for kprobes. Found by syzkaller with the following reproducer: perf_event_open$cgroup(&(0x7f00000001c0)={0x6, 0x80, 0x0, 0x0, 0x0, 0x0, 0x80ffff, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, @perf_config_ext={0x0, 0xffffffffff600000}}, 0xffffffffffffffff, 0x0, 0xffffffffffffffff, 0x0) Sample report: BUG: unable to handle page fault for address: fffffbfff3ac6000 PGD 6dfcb067 P4D 6dfcb067 PUD 6df8f067 PMD 6de4d067 PTE 0 Oops: 0000 [#1] PREEMPT SMP KASAN NOPTI CPU: 0 PID: 21978 Comm: syz-executor.2 Not tainted 6.0.0-rc3-00363-g7726d4c3e60b-dirty #6 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP: 0010:__insn_get_emulate_prefix arch/x86/lib/insn.c:91 [inline] RIP: 0010:insn_get_emulate_prefix arch/x86/lib/insn.c:106 [inline] RIP: 0010:insn_get_prefixes.part.0+0xa8/0x1110 arch/x86/lib/insn.c:134 Code: 49 be 00 00 00 00 00 fc ff df 48 8b 40 60 48 89 44 24 08 e9 81 00 00 00 e8 e5 4b 39 ff 4c 89 fa 4c 89 f9 48 c1 ea 03 83 e1 07 <42> 0f b6 14 32 38 ca 7f 08 84 d2 0f 85 06 10 00 00 48 89 d8 48 89 RSP: 0018:ffffc900088bf860 EFLAGS: 00010246 RAX: 0000000000040000 RBX: ffffffff9b9bebc0 RCX: 0000000000000000 RDX: 1ffffffff3ac6000 RSI: ffffc90002d82000 RDI: ffffc900088bf9e8 RBP: ffffffff9d630001 R08: 0000000000000000 R09: ffffc900088bf9e8 R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000001 R13: ffffffff9d630000 R14: dffffc0000000000 R15: ffffffff9d630000 FS: 00007f63eef63640(0000) GS:ffff88806d000000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: fffffbfff3ac6000 CR3: 0000000029d90005 CR4: 0000000000770ef0 PKRU: 55555554 Call Trace: <TASK> insn_get_prefixes arch/x86/lib/insn.c:131 [inline] insn_get_opcode arch/x86/lib/insn.c:272 [inline] insn_get_modrm+0x64a/0x7b0 arch/x86/lib/insn.c:343 insn_get_sib+0x29a/0x330 arch/x86/lib/insn.c:421 insn_get_displacement+0x350/0x6b0 arch/x86/lib/insn.c:464 insn_get_immediate arch/x86/lib/insn.c:632 [inline] insn_get_length arch/x86/lib/insn.c:707 [inline] insn_decode+0x43a/0x490 arch/x86/lib/insn.c:747 can_probe+0xfc/0x1d0 arch/x86/kernel/kprobes/core.c:282 arch_prepare_kprobe+0x79/0x1c0 arch/x86/kernel/kprobes/core.c:739 prepare_kprobe kernel/kprobes.c:1160 [inline] register_kprobe kernel/kprobes.c:1641 [inline] register_kprobe+0xb6e/0x1690 kernel/kprobes.c:1603 __register_trace_kprobe kernel/trace/trace_kprobe.c:509 [inline] __register_trace_kprobe+0x26a/0x2d0 kernel/trace/trace_kprobe.c:477 create_local_trace_kprobe+0x1f7/0x350 kernel/trace/trace_kprobe.c:1833 perf_kprobe_init+0x18c/0x280 kernel/trace/trace_event_perf.c:271 perf_kprobe_event_init+0xf8/0x1c0 kernel/events/core.c:9888 perf_try_init_event+0x12d/0x570 kernel/events/core.c:11261 perf_init_event kernel/events/core.c:11325 [inline] perf_event_alloc.part.0+0xf7f/0x36a0 kernel/events/core.c:11619 perf_event_alloc kernel/events/core.c:12059 [inline] __do_sys_perf_event_open+0x4a8/0x2a00 kernel/events/core.c:12157 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x38/0x90 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f63ef7efaed Code: 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f63eef63028 EFLAGS: 00000246 ORIG_RAX: 000000000000012a RAX: ffffffffffffffda RBX: 00007f63ef90ff80 RCX: 00007f63ef7efaed RDX: 0000000000000000 RSI: ffffffffffffffff RDI: 00000000200001c0 RBP: 00007f63ef86019c R08: 0000000000000000 R09: 0000000000000000 R10: ffffffffffffffff R11: 0000000000000246 R12: 0000000000000000 R13: 0000000000000002 R14: 00007f63ef90ff80 R15: 00007f63eef43000 </TASK> Modules linked in: CR2: fffffbfff3ac6000 ---[ end trace 0000000000000000 ]--- RIP: 0010:__insn_get_emulate_prefix arch/x86/lib/insn.c:91 [inline] RIP: 0010:insn_get_emulate_prefix arch/x86/lib/insn.c:106 [inline] RIP: 0010:insn_get_prefixes.part.0+0xa8/0x1110 arch/x86/lib/insn.c:134 Code: 49 be 00 00 00 00 00 fc ff df 48 8b 40 60 48 89 44 24 08 e9 81 00 00 00 e8 e5 4b 39 ff 4c 89 fa 4c 89 f9 48 c1 ea 03 83 e1 07 <42> 0f b6 14 32 38 ca 7f 08 84 d2 0f 85 06 10 00 00 48 89 d8 48 89 RSP: 0018:ffffc900088bf860 EFLAGS: 00010246 RAX: 0000000000040000 RBX: ffffffff9b9bebc0 RCX: 0000000000000000 RDX: 1ffffffff3ac6000 RSI: ffffc90002d82000 RDI: ffffc900088bf9e8 RBP: ffffffff9d630001 R08: 0000000000000000 R09: ffffc900088bf9e8 R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000001 R13: ffffffff9d630000 R14: dffffc0000000000 R15: ffffffff9d630000 FS: 00007f63eef63640(0000) GS:ffff88806d000000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: fffffbfff3ac6000 CR3: 0000000029d90005 CR4: 0000000000770ef0 PKRU: 55555554 ================================================================== Link: https://lkml.kernel.org/r/20220907200917.654103-1-lk@c--e.de cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com> cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> cc: "David S. Miller" <davem@davemloft.net> Cc: stable@vger.kernel.org Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Christian A. Ehrhardt <lk@c--e.de> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
a7cf53f9eb |
bpf: Verifer, adjust_scalar_min_max_vals to always call update_reg_bounds()
commit 294f2fc6da27620a506e6c050241655459ccd6bd upstream. Currently, for all op verification we call __red_deduce_bounds() and __red_bound_offset() but we only call __update_reg_bounds() in bitwise ops. However, we could benefit from calling __update_reg_bounds() in BPF_ADD, BPF_SUB, and BPF_MUL cases as well. For example, a register with state 'R1_w=invP0' when we subtract from it, w1 -= 2 Before coerce we will now have an smin_value=S64_MIN, smax_value=U64_MAX and unsigned bounds umin_value=0, umax_value=U64_MAX. These will then be clamped to S32_MIN, U32_MAX values by coerce in the case of alu32 op as done in above example. However tnum will be a constant because the ALU op is done on a constant. Without update_reg_bounds() we have a scenario where tnum is a const but our unsigned bounds do not reflect this. By calling update_reg_bounds after coerce to 32bit we further refine the umin_value to U64_MAX in the alu64 case or U32_MAX in the alu32 case above. Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/158507151689.15666.566796274289413203.stgit@john-Precision-5820-Tower Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
6f3c1bc22f |
kprobes: don't call disarm_kprobe() for disabled kprobes
commit 9c80e79906b4ca440d09e7f116609262bb747909 upstream. The assumption in __disable_kprobe() is wrong, and it could try to disarm an already disarmed kprobe and fire the WARN_ONCE() below. [0] We can easily reproduce this issue. 1. Write 0 to /sys/kernel/debug/kprobes/enabled. # echo 0 > /sys/kernel/debug/kprobes/enabled 2. Run execsnoop. At this time, one kprobe is disabled. # /usr/share/bcc/tools/execsnoop & [1] 2460 PCOMM PID PPID RET ARGS # cat /sys/kernel/debug/kprobes/list ffffffff91345650 r __x64_sys_execve+0x0 [FTRACE] ffffffff91345650 k __x64_sys_execve+0x0 [DISABLED][FTRACE] 3. Write 1 to /sys/kernel/debug/kprobes/enabled, which changes kprobes_all_disarmed to false but does not arm the disabled kprobe. # echo 1 > /sys/kernel/debug/kprobes/enabled # cat /sys/kernel/debug/kprobes/list ffffffff91345650 r __x64_sys_execve+0x0 [FTRACE] ffffffff91345650 k __x64_sys_execve+0x0 [DISABLED][FTRACE] 4. Kill execsnoop, when __disable_kprobe() calls disarm_kprobe() for the disabled kprobe and hits the WARN_ONCE() in __disarm_kprobe_ftrace(). # fg /usr/share/bcc/tools/execsnoop ^C Actually, WARN_ONCE() is fired twice, and __unregister_kprobe_top() misses some cleanups and leaves the aggregated kprobe in the hash table. Then, __unregister_trace_kprobe() initialises tk->rp.kp.list and creates an infinite loop like this. aggregated kprobe.list -> kprobe.list -. ^ | '.__.' In this situation, these commands fall into the infinite loop and result in RCU stall or soft lockup. cat /sys/kernel/debug/kprobes/list : show_kprobe_addr() enters into the infinite loop with RCU. /usr/share/bcc/tools/execsnoop : warn_kprobe_rereg() holds kprobe_mutex, and __get_valid_kprobe() is stuck in the loop. To avoid the issue, make sure we don't call disarm_kprobe() for disabled kprobes. [0] Failed to disarm kprobe-ftrace at __x64_sys_execve+0x0/0x40 (error -2) WARNING: CPU: 6 PID: 2460 at kernel/kprobes.c:1130 __disarm_kprobe_ftrace.isra.19 (kernel/kprobes.c:1129) Modules linked in: ena CPU: 6 PID: 2460 Comm: execsnoop Not tainted 5.19.0+ #28 Hardware name: Amazon EC2 c5.2xlarge/, BIOS 1.0 10/16/2017 RIP: 0010:__disarm_kprobe_ftrace.isra.19 (kernel/kprobes.c:1129) Code: 24 8b 02 eb c1 80 3d c4 83 f2 01 00 75 d4 48 8b 75 00 89 c2 48 c7 c7 90 fa 0f 92 89 04 24 c6 05 ab 83 01 e8 e4 94 f0 ff <0f> 0b 8b 04 24 eb b1 89 c6 48 c7 c7 60 fa 0f 92 89 04 24 e8 cc 94 RSP: 0018:ffff9e6ec154bd98 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffffffff930f7b00 RCX: 0000000000000001 RDX: 0000000080000001 RSI: ffffffff921461c5 RDI: 00000000ffffffff RBP: ffff89c504286da8 R08: 0000000000000000 R09: c0000000fffeffff R10: 0000000000000000 R11: ffff9e6ec154bc28 R12: ffff89c502394e40 R13: ffff89c502394c00 R14: ffff9e6ec154bc00 R15: 0000000000000000 FS: 00007fe800398740(0000) GS:ffff89c812d80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000c00057f010 CR3: 0000000103b54006 CR4: 00000000007706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <TASK> __disable_kprobe (kernel/kprobes.c:1716) disable_kprobe (kernel/kprobes.c:2392) __disable_trace_kprobe (kernel/trace/trace_kprobe.c:340) disable_trace_kprobe (kernel/trace/trace_kprobe.c:429) perf_trace_event_unreg.isra.2 (./include/linux/tracepoint.h:93 kernel/trace/trace_event_perf.c:168) perf_kprobe_destroy (kernel/trace/trace_event_perf.c:295) _free_event (kernel/events/core.c:4971) perf_event_release_kernel (kernel/events/core.c:5176) perf_release (kernel/events/core.c:5186) __fput (fs/file_table.c:321) task_work_run (./include/linux/sched.h:2056 (discriminator 1) kernel/task_work.c:179 (discriminator 1)) exit_to_user_mode_prepare (./include/linux/resume_user_mode.h:49 kernel/entry/common.c:169 kernel/entry/common.c:201) syscall_exit_to_user_mode (./arch/x86/include/asm/jump_label.h:55 ./arch/x86/include/asm/nospec-branch.h:384 ./arch/x86/include/asm/entry-common.h:94 kernel/entry/common.c:133 kernel/entry/common.c:296) do_syscall_64 (arch/x86/entry/common.c:87) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120) RIP: 0033:0x7fe7ff210654 Code: 15 79 89 20 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb be 0f 1f 00 8b 05 9a cd 20 00 48 63 ff 85 c0 75 11 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 3a f3 c3 48 83 ec 18 48 89 7c 24 08 e8 34 fc RSP: 002b:00007ffdbd1d3538 EFLAGS: 00000246 ORIG_RAX: 0000000000000003 RAX: 0000000000000000 RBX: 0000000000000008 RCX: 00007fe7ff210654 RDX: 0000000000000000 RSI: 0000000000002401 RDI: 0000000000000008 RBP: 0000000000000000 R08: 94ae31d6fda838a4 R0900007fe8001c9d30 R10: 00007ffdbd1d34b0 R11: 0000000000000246 R12: 00007ffdbd1d3600 R13: 0000000000000000 R14: fffffffffffffffc R15: 00007ffdbd1d3560 </TASK> Link: https://lkml.kernel.org/r/20220813020509.90805-1-kuniyu@amazon.com Fixes: 69d54b916d83 ("kprobes: makes kprobes/enabled works correctly for optimized kprobes.") Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Reported-by: Ayushman Dutta <ayudutta@amazon.com> Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com> Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Wang Nan <wangnan0@huawei.com> Cc: Kuniyuki Iwashima <kuniyu@amazon.com> Cc: Kuniyuki Iwashima <kuni1840@gmail.com> Cc: Ayushman Dutta <ayudutta@amazon.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
|
4c34a2a6c9 |
ftrace: Fix NULL pointer dereference in is_ftrace_trampoline when ftrace is dead
commit c3b0f72e805f0801f05fa2aa52011c4bfc694c44 upstream. ftrace_startup does not remove ops from ftrace_ops_list when ftrace_startup_enable fails: register_ftrace_function ftrace_startup __register_ftrace_function ... add_ftrace_ops(&ftrace_ops_list, ops) ... ... ftrace_startup_enable // if ftrace failed to modify, ftrace_disabled is set to 1 ... return 0 // ops is in the ftrace_ops_list. When ftrace_disabled = 1, unregister_ftrace_function simply returns without doing anything: unregister_ftrace_function ftrace_shutdown if (unlikely(ftrace_disabled)) return -ENODEV; // return here, __unregister_ftrace_function is not executed, // as a result, ops is still in the ftrace_ops_list __unregister_ftrace_function ... If ops is dynamically allocated, it will be free later, in this case, is_ftrace_trampoline accesses NULL pointer: is_ftrace_trampoline ftrace_ops_trampoline do_for_each_ftrace_op(op, ftrace_ops_list) // OOPS! op may be NULL! Syzkaller reports as follows: [ 1203.506103] BUG: kernel NULL pointer dereference, address: 000000000000010b [ 1203.508039] #PF: supervisor read access in kernel mode [ 1203.508798] #PF: error_code(0x0000) - not-present page [ 1203.509558] PGD 800000011660b067 P4D 800000011660b067 PUD 130fb8067 PMD 0 [ 1203.510560] Oops: 0000 [#1] SMP KASAN PTI [ 1203.511189] CPU: 6 PID: 29532 Comm: syz-executor.2 Tainted: G B W 5.10.0 #8 [ 1203.512324] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 1203.513895] RIP: 0010:is_ftrace_trampoline+0x26/0xb0 [ 1203.514644] Code: ff eb d3 90 41 55 41 54 49 89 fc 55 53 e8 f2 00 fd ff 48 8b 1d 3b 35 5d 03 e8 e6 00 fd ff 48 8d bb 90 00 00 00 e8 2a 81 26 00 <48> 8b ab 90 00 00 00 48 85 ed 74 1d e8 c9 00 fd ff 48 8d bb 98 00 [ 1203.518838] RSP: 0018:ffffc900012cf960 EFLAGS: 00010246 [ 1203.520092] RAX: 0000000000000000 RBX: 000000000000007b RCX: ffffffff8a331866 [ 1203.521469] RDX: 0000000000000000 RSI: 0000000000000008 RDI: 000000000000010b [ 1203.522583] RBP: 0000000000000000 R08: 0000000000000000 R09: ffffffff8df18b07 [ 1203.523550] R10: fffffbfff1be3160 R11: 0000000000000001 R12: 0000000000478399 [ 1203.524596] R13: 0000000000000000 R14: ffff888145088000 R15: 0000000000000008 [ 1203.525634] FS: 00007f429f5f4700(0000) GS:ffff8881daf00000(0000) knlGS:0000000000000000 [ 1203.526801] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1203.527626] CR2: 000000000000010b CR3: 0000000170e1e001 CR4: 00000000003706e0 [ 1203.528611] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 1203.529605] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Therefore, when ftrace_startup_enable fails, we need to rollback registration process and remove ops from ftrace_ops_list. Link: https://lkml.kernel.org/r/20220818032659.56209-1-yangjihong1@huawei.com Suggested-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Yang Jihong <yangjihong1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |