msm-4.14/drivers/i2c/i2c-smbus.c
Guenter Roeck a0bb631d7d i2c: smbus: Send alert notifications to all devices if source not found
[ Upstream commit f6c29f710c1ff2590109f83be3e212b86c01e0f3 ]

If a SMBus alert is received and the originating device is not found,
the reason may be that the address reported on the SMBus alert address
is corrupted, for example because multiple devices asserted alert and
do not correctly implement SMBus arbitration.

If this happens, call alert handlers on all devices connected to the
given I2C bus, in the hope that this cleans up the situation.

This change reliably fixed the problem on a system with multiple devices
on a single bus. Example log where the device on address 0x18 (ADM1021)
and on address 0x4c (ADT7461A) both had the alert line asserted:

smbus_alert 3-000c: SMBALERT# from dev 0x0c, flag 0
smbus_alert 3-000c: no driver alert()!
smbus_alert 3-000c: SMBALERT# from dev 0x0c, flag 0
smbus_alert 3-000c: no driver alert()!
lm90 3-0018: temp1 out of range, please check!
lm90 3-0018: Disabling ALERT#
lm90 3-0029: Everything OK
lm90 3-002a: Everything OK
lm90 3-004c: temp1 out of range, please check!
lm90 3-004c: temp2 out of range, please check!
lm90 3-004c: Disabling ALERT#

Fixes: b5527a7766f0 ("i2c: Add SMBus alert support")
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
[wsa: fixed a typo in the commit message]
Signed-off-by: Wolfram Sang <wsa+renesas@sang-engineering.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
(cherry picked from commit 3b20631d0704fe4f6bf4cf9a49fd19871ebaeffb)
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
2024-10-10 10:27:28 +00:00

292 lines
8.1 KiB
C

/*
* i2c-smbus.c - SMBus extensions to the I2C protocol
*
* Copyright (C) 2008 David Brownell
* Copyright (C) 2010 Jean Delvare <jdelvare@suse.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/device.h>
#include <linux/i2c.h>
#include <linux/i2c-smbus.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
struct i2c_smbus_alert {
unsigned int alert_edge_triggered:1;
int irq;
struct work_struct alert;
struct i2c_client *ara; /* Alert response address */
};
struct alert_data {
unsigned short addr;
enum i2c_alert_protocol type;
unsigned int data;
};
/* If this is the alerting device, notify its driver */
static int smbus_do_alert(struct device *dev, void *addrp)
{
struct i2c_client *client = i2c_verify_client(dev);
struct alert_data *data = addrp;
struct i2c_driver *driver;
int ret;
if (!client || client->addr != data->addr)
return 0;
if (client->flags & I2C_CLIENT_TEN)
return 0;
/*
* Drivers should either disable alerts, or provide at least
* a minimal handler. Lock so the driver won't change.
*/
device_lock(dev);
if (client->dev.driver) {
driver = to_i2c_driver(client->dev.driver);
if (driver->alert) {
/* Stop iterating after we find the device */
driver->alert(client, data->type, data->data);
ret = -EBUSY;
} else {
dev_warn(&client->dev, "no driver alert()!\n");
ret = -EOPNOTSUPP;
}
} else {
dev_dbg(&client->dev, "alert with no driver\n");
ret = -ENODEV;
}
device_unlock(dev);
return ret;
}
/* Same as above, but call back all drivers with alert handler */
static int smbus_do_alert_force(struct device *dev, void *addrp)
{
struct i2c_client *client = i2c_verify_client(dev);
struct alert_data *data = addrp;
struct i2c_driver *driver;
if (!client || (client->flags & I2C_CLIENT_TEN))
return 0;
/*
* Drivers should either disable alerts, or provide at least
* a minimal handler. Lock so the driver won't change.
*/
device_lock(dev);
if (client->dev.driver) {
driver = to_i2c_driver(client->dev.driver);
if (driver->alert)
driver->alert(client, data->type, data->data);
}
device_unlock(dev);
return 0;
}
/*
* The alert IRQ handler needs to hand work off to a task which can issue
* SMBus calls, because those sleeping calls can't be made in IRQ context.
*/
static void smbus_alert(struct work_struct *work)
{
struct i2c_smbus_alert *alert;
struct i2c_client *ara;
unsigned short prev_addr = I2C_CLIENT_END; /* Not a valid address */
alert = container_of(work, struct i2c_smbus_alert, alert);
ara = alert->ara;
for (;;) {
s32 status;
struct alert_data data;
/*
* Devices with pending alerts reply in address order, low
* to high, because of slave transmit arbitration. After
* responding, an SMBus device stops asserting SMBALERT#.
*
* Note that SMBus 2.0 reserves 10-bit addresses for future
* use. We neither handle them, nor try to use PEC here.
*/
status = i2c_smbus_read_byte(ara);
if (status < 0)
break;
data.data = status & 1;
data.addr = status >> 1;
data.type = I2C_PROTOCOL_SMBUS_ALERT;
dev_dbg(&ara->dev, "SMBALERT# from dev 0x%02x, flag %d\n",
data.addr, data.data);
/* Notify driver for the device which issued the alert */
status = device_for_each_child(&ara->adapter->dev, &data,
smbus_do_alert);
/*
* If we read the same address more than once, and the alert
* was not handled by a driver, it won't do any good to repeat
* the loop because it will never terminate. Try again, this
* time calling the alert handlers of all devices connected to
* the bus, and abort the loop afterwards. If this helps, we
* are all set. If it doesn't, there is nothing else we can do,
* so we might as well abort the loop.
* Note: This assumes that a driver with alert handler handles
* the alert properly and clears it if necessary.
*/
if (data.addr == prev_addr && status != -EBUSY) {
device_for_each_child(&ara->adapter->dev, &data,
smbus_do_alert_force);
break;
}
prev_addr = data.addr;
}
/* We handled all alerts; re-enable level-triggered IRQs */
if (!alert->alert_edge_triggered)
enable_irq(alert->irq);
}
static irqreturn_t smbalert_irq(int irq, void *d)
{
struct i2c_smbus_alert *alert = d;
/* Disable level-triggered IRQs until we handle them */
if (!alert->alert_edge_triggered)
disable_irq_nosync(irq);
schedule_work(&alert->alert);
return IRQ_HANDLED;
}
/* Setup SMBALERT# infrastructure */
static int smbalert_probe(struct i2c_client *ara,
const struct i2c_device_id *id)
{
struct i2c_smbus_alert_setup *setup = dev_get_platdata(&ara->dev);
struct i2c_smbus_alert *alert;
struct i2c_adapter *adapter = ara->adapter;
int res;
alert = devm_kzalloc(&ara->dev, sizeof(struct i2c_smbus_alert),
GFP_KERNEL);
if (!alert)
return -ENOMEM;
alert->alert_edge_triggered = setup->alert_edge_triggered;
alert->irq = setup->irq;
INIT_WORK(&alert->alert, smbus_alert);
alert->ara = ara;
if (setup->irq > 0) {
res = devm_request_irq(&ara->dev, setup->irq, smbalert_irq,
0, "smbus_alert", alert);
if (res)
return res;
}
i2c_set_clientdata(ara, alert);
dev_info(&adapter->dev, "supports SMBALERT#, %s trigger\n",
setup->alert_edge_triggered ? "edge" : "level");
return 0;
}
/* IRQ and memory resources are managed so they are freed automatically */
static int smbalert_remove(struct i2c_client *ara)
{
struct i2c_smbus_alert *alert = i2c_get_clientdata(ara);
cancel_work_sync(&alert->alert);
return 0;
}
static const struct i2c_device_id smbalert_ids[] = {
{ "smbus_alert", 0 },
{ /* LIST END */ }
};
MODULE_DEVICE_TABLE(i2c, smbalert_ids);
static struct i2c_driver smbalert_driver = {
.driver = {
.name = "smbus_alert",
},
.probe = smbalert_probe,
.remove = smbalert_remove,
.id_table = smbalert_ids,
};
/**
* i2c_setup_smbus_alert - Setup SMBus alert support
* @adapter: the target adapter
* @setup: setup data for the SMBus alert handler
* Context: can sleep
*
* Setup handling of the SMBus alert protocol on a given I2C bus segment.
*
* Handling can be done either through our IRQ handler, or by the
* adapter (from its handler, periodic polling, or whatever).
*
* NOTE that if we manage the IRQ, we *MUST* know if it's level or
* edge triggered in order to hand it to the workqueue correctly.
* If triggering the alert seems to wedge the system, you probably
* should have said it's level triggered.
*
* This returns the ara client, which should be saved for later use with
* i2c_handle_smbus_alert() and ultimately i2c_unregister_device(); or NULL
* to indicate an error.
*/
struct i2c_client *i2c_setup_smbus_alert(struct i2c_adapter *adapter,
struct i2c_smbus_alert_setup *setup)
{
struct i2c_board_info ara_board_info = {
I2C_BOARD_INFO("smbus_alert", 0x0c),
.platform_data = setup,
};
return i2c_new_device(adapter, &ara_board_info);
}
EXPORT_SYMBOL_GPL(i2c_setup_smbus_alert);
/**
* i2c_handle_smbus_alert - Handle an SMBus alert
* @ara: the ARA client on the relevant adapter
* Context: can't sleep
*
* Helper function to be called from an I2C bus driver's interrupt
* handler. It will schedule the alert work, in turn calling the
* corresponding I2C device driver's alert function.
*
* It is assumed that ara is a valid i2c client previously returned by
* i2c_setup_smbus_alert().
*/
int i2c_handle_smbus_alert(struct i2c_client *ara)
{
struct i2c_smbus_alert *alert = i2c_get_clientdata(ara);
return schedule_work(&alert->alert);
}
EXPORT_SYMBOL_GPL(i2c_handle_smbus_alert);
module_i2c_driver(smbalert_driver);
MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
MODULE_DESCRIPTION("SMBus protocol extensions support");
MODULE_LICENSE("GPL");