Zhongqiu Han 06dcadb784 sched: idle: Optimize the generic idle loop by removing needless memory barrier
The memory barrier rmb() in generic idle loop do_idle() function is not
needed, it doesn't order any load instruction, just remove it as needless
rmb() can cause performance impact.

The rmb() was introduced by the tglx/history.git commit f2f1b44c75c4
("[PATCH] Remove RCU abuse in cpu_idle()") to order the loads between
cpu_idle_map and pm_idle. It pairs with wmb() in function cpu_idle_wait().

And then with the removal of cpu_idle_state in function cpu_idle() and
wmb() in function cpu_idle_wait() in commit 783e391b7b5b ("x86: Simplify
cpu_idle_wait"), rmb() no longer has a reason to exist.

After that, commit d16699123434 ("idle: Implement generic idle function")
implemented a generic idle function cpu_idle_loop() which resembles the
functionality found in arch/. And it retained the rmb() in generic idle
loop in file kernel/cpu/idle.c.

And at last, commit cf37b6b48428 ("sched/idle: Move cpu/idle.c to
sched/idle.c") moved cpu/idle.c to sched/idle.c. And commit c1de45ca831a
("sched/idle: Add support for tasks that inject idle") renamed function
cpu_idle_loop() to do_idle().

History Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git
Signed-off-by: Zhongqiu Han <quic_zhonhan@quicinc.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20241009093745.9504-1-quic_zhonhan@quicinc.com
Change-Id: I7a57f4796f2ab451b14290de2f7e6255823a928d
Signed-off-by: Richard Raya <rdxzv.dev@gmail.com>
2025-02-08 23:19:49 -03:00

384 lines
9.3 KiB
C

/*
* Generic entry point for the idle threads
*/
#include <linux/sched.h>
#include <linux/sched/idle.h>
#include <linux/cpu.h>
#include <linux/cpuidle.h>
#include <linux/cpuhotplug.h>
#include <linux/tick.h>
#include <linux/mm.h>
#include <linux/stackprotector.h>
#include <linux/suspend.h>
#include <linux/livepatch.h>
#include <asm/tlb.h>
#include <trace/events/power.h>
#include "sched.h"
/* Linker adds these: start and end of __cpuidle functions */
extern char __cpuidle_text_start[], __cpuidle_text_end[];
/**
* sched_idle_set_state - Record idle state for the current CPU.
* @idle_state: State to record.
*/
void sched_idle_set_state(struct cpuidle_state *idle_state, int index)
{
idle_set_state(this_rq(), idle_state);
idle_set_state_idx(this_rq(), index);
}
static int __read_mostly cpu_idle_force_poll;
void cpu_idle_poll_ctrl(bool enable)
{
if (enable) {
cpu_idle_force_poll++;
} else {
cpu_idle_force_poll--;
WARN_ON_ONCE(cpu_idle_force_poll < 0);
}
}
#ifdef CONFIG_GENERIC_IDLE_POLL_SETUP
static int __init cpu_idle_poll_setup(char *__unused)
{
cpu_idle_force_poll = 1;
return 1;
}
__setup("nohlt", cpu_idle_poll_setup);
static int __init cpu_idle_nopoll_setup(char *__unused)
{
cpu_idle_force_poll = 0;
return 1;
}
__setup("hlt", cpu_idle_nopoll_setup);
#endif
static noinline int __cpuidle cpu_idle_poll(void)
{
rcu_idle_enter();
trace_cpu_idle_rcuidle(0, smp_processor_id());
local_irq_enable();
stop_critical_timings();
while (!tif_need_resched() &&
(cpu_idle_force_poll || tick_check_broadcast_expired()))
cpu_relax();
start_critical_timings();
trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
rcu_idle_exit();
return 1;
}
/* Weak implementations for optional arch specific functions */
void __weak arch_cpu_idle_prepare(void) { }
void __weak arch_cpu_idle_enter(void) { }
void __weak arch_cpu_idle_exit(void) { }
void __weak arch_cpu_idle_dead(void) { }
void __weak arch_cpu_idle(void)
{
cpu_idle_force_poll = 1;
local_irq_enable();
}
/**
* default_idle_call - Default CPU idle routine.
*
* To use when the cpuidle framework cannot be used.
*/
void __cpuidle default_idle_call(void)
{
if (current_clr_polling_and_test()) {
local_irq_enable();
} else {
stop_critical_timings();
arch_cpu_idle();
start_critical_timings();
}
}
static int call_cpuidle(struct cpuidle_driver *drv, struct cpuidle_device *dev,
int next_state)
{
/*
* The idle task must be scheduled, it is pointless to go to idle, just
* update no idle residency and return.
*/
if (current_clr_polling_and_test()) {
dev->last_residency = 0;
local_irq_enable();
return -EBUSY;
}
/*
* Enter the idle state previously returned by the governor decision.
* This function will block until an interrupt occurs and will take
* care of re-enabling the local interrupts
*/
return cpuidle_enter(drv, dev, next_state);
}
/**
* cpuidle_idle_call - the main idle function
*
* NOTE: no locks or semaphores should be used here
*
* On archs that support TIF_POLLING_NRFLAG, is called with polling
* set, and it returns with polling set. If it ever stops polling, it
* must clear the polling bit.
*/
static void cpuidle_idle_call(void)
{
struct cpuidle_device *dev = cpuidle_get_device();
struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
int next_state, entered_state;
/*
* Check if the idle task must be rescheduled. If it is the
* case, exit the function after re-enabling the local irq.
*/
if (need_resched()) {
local_irq_enable();
return;
}
/*
* The RCU framework needs to be told that we are entering an idle
* section, so no more rcu read side critical sections and one more
* step to the grace period
*/
if (cpuidle_not_available(drv, dev)) {
tick_nohz_idle_stop_tick();
rcu_idle_enter();
default_idle_call();
goto exit_idle;
}
/*
* Suspend-to-idle ("s2idle") is a system state in which all user space
* has been frozen, all I/O devices have been suspended and the only
* activity happens here and in iterrupts (if any). In that case bypass
* the cpuidle governor and go stratight for the deepest idle state
* available. Possibly also suspend the local tick and the entire
* timekeeping to prevent timer interrupts from kicking us out of idle
* until a proper wakeup interrupt happens.
*/
if (idle_should_enter_s2idle() || dev->use_deepest_state) {
if (idle_should_enter_s2idle()) {
rcu_idle_enter();
entered_state = cpuidle_enter_s2idle(drv, dev);
if (entered_state > 0) {
local_irq_enable();
goto exit_idle;
}
rcu_idle_exit();
}
tick_nohz_idle_stop_tick();
rcu_idle_enter();
next_state = cpuidle_find_deepest_state(drv, dev);
call_cpuidle(drv, dev, next_state);
} else {
bool stop_tick = true;
/*
* Ask the cpuidle framework to choose a convenient idle state.
*/
next_state = cpuidle_select(drv, dev, &stop_tick);
if (stop_tick || tick_nohz_tick_stopped())
tick_nohz_idle_stop_tick();
else
tick_nohz_idle_retain_tick();
rcu_idle_enter();
entered_state = call_cpuidle(drv, dev, next_state);
/*
* Give the governor an opportunity to reflect on the outcome
*/
cpuidle_reflect(dev, entered_state);
}
exit_idle:
__current_set_polling();
/*
* It is up to the idle functions to reenable local interrupts
*/
if (WARN_ON_ONCE(irqs_disabled()))
local_irq_enable();
rcu_idle_exit();
}
/*
* Generic idle loop implementation
*
* Called with polling cleared.
*/
static void do_idle(void)
{
int cpu = smp_processor_id();
/*
* If the arch has a polling bit, we maintain an invariant:
*
* Our polling bit is clear if we're not scheduled (i.e. if rq->curr !=
* rq->idle). This means that, if rq->idle has the polling bit set,
* then setting need_resched is guaranteed to cause the CPU to
* reschedule.
*/
__current_set_polling();
tick_nohz_idle_enter();
while (!need_resched()) {
check_pgt_cache();
local_irq_disable();
if (cpu_is_offline(cpu)) {
tick_nohz_idle_stop_tick();
cpuhp_report_idle_dead();
arch_cpu_idle_dead();
} else {
cpuidle_set_idle_cpu(cpu);
}
arch_cpu_idle_enter();
rcu_nocb_flush_deferred_wakeup();
/*
* In poll mode we reenable interrupts and spin. Also if we
* detected in the wakeup from idle path that the tick
* broadcast device expired for us, we don't want to go deep
* idle as we know that the IPI is going to arrive right away.
*/
if (cpu_idle_force_poll || tick_check_broadcast_expired()) {
tick_nohz_idle_restart_tick();
cpu_idle_poll();
} else {
cpuidle_idle_call();
}
cpuidle_clear_idle_cpu(cpu);
arch_cpu_idle_exit();
}
/*
* Since we fell out of the loop above, we know TIF_NEED_RESCHED must
* be set, propagate it into PREEMPT_NEED_RESCHED.
*
* This is required because for polling idle loops we will not have had
* an IPI to fold the state for us.
*/
preempt_set_need_resched();
tick_nohz_idle_exit();
__current_clr_polling();
/*
* We promise to call sched_ttwu_pending() and reschedule if
* need_resched() is set while polling is set. That means that clearing
* polling needs to be visible before doing these things.
*/
smp_mb__after_atomic();
/*
* RCU relies on this call to be done outside of an RCU read-side
* critical section.
*/
flush_smp_call_function_from_idle();
sched_ttwu_pending();
schedule_idle();
if (unlikely(klp_patch_pending(current)))
klp_update_patch_state(current);
}
bool cpu_in_idle(unsigned long pc)
{
return pc >= (unsigned long)__cpuidle_text_start &&
pc < (unsigned long)__cpuidle_text_end;
}
struct idle_timer {
struct hrtimer timer;
int done;
};
static enum hrtimer_restart idle_inject_timer_fn(struct hrtimer *timer)
{
struct idle_timer *it = container_of(timer, struct idle_timer, timer);
WRITE_ONCE(it->done, 1);
set_tsk_need_resched(current);
return HRTIMER_NORESTART;
}
void play_idle(unsigned long duration_ms)
{
struct idle_timer it;
/*
* Only FIFO tasks can disable the tick since they don't need the forced
* preemption.
*/
WARN_ON_ONCE(current->policy != SCHED_FIFO);
WARN_ON_ONCE(current->nr_cpus_allowed != 1);
WARN_ON_ONCE(!(current->flags & PF_KTHREAD));
WARN_ON_ONCE(!(current->flags & PF_NO_SETAFFINITY));
WARN_ON_ONCE(!duration_ms);
rcu_sleep_check();
preempt_disable();
current->flags |= PF_IDLE;
cpuidle_use_deepest_state(true);
it.done = 0;
hrtimer_init_on_stack(&it.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
it.timer.function = idle_inject_timer_fn;
hrtimer_start(&it.timer, ms_to_ktime(duration_ms), HRTIMER_MODE_REL_PINNED);
while (!READ_ONCE(it.done))
do_idle();
cpuidle_use_deepest_state(false);
current->flags &= ~PF_IDLE;
preempt_fold_need_resched();
preempt_enable();
}
EXPORT_SYMBOL_GPL(play_idle);
void cpu_startup_entry(enum cpuhp_state state)
{
/*
* This #ifdef needs to die, but it's too late in the cycle to
* make this generic (arm and sh have never invoked the canary
* init for the non boot cpus!). Will be fixed in 3.11
*/
#ifdef CONFIG_X86
/*
* If we're the non-boot CPU, nothing set the stack canary up
* for us. The boot CPU already has it initialized but no harm
* in doing it again. This is a good place for updating it, as
* we wont ever return from this function (so the invalid
* canaries already on the stack wont ever trigger).
*/
boot_init_stack_canary();
#endif
arch_cpu_idle_prepare();
cpuhp_online_idle(state);
while (1)
do_idle();
}